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Abstract

Biological systems use visual information in many different contexts. One exam-

ple is the ability to focus attention, another the ability to use visual information

as a navigational aid. As navigation is an important issue in the field of robotics,

it is worth trying to build robots that are able to mimic the natural computa-

tion of visual information. This project examines and implements mechanisms

to develop these behaviours on a mobile robot. A corridor following algorithm

was implemented which used visual information to follow the corridor. It worked

successfully in a number of different corridors.

Another point that is important in navigation is the ability to perceive dis-

tances. Indeed, distances are usually taken as parameters when a plan of the en-

vironment is created, either by an operator or by the robot itself. In this project

a learning mechanism is used to learn the relationship between optic flow and

ego-motion: the robot learns to estimate its own motion, judging from changes

in the image. The robot is able to estimate distances with less than 10% relative

error, as long as the travelled distance is sufficiently long. For small distances the

relative error increases.
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Chapter 1

Introduction

1.1 Motivation for this work

Since its beginning, the robotics field had tried to increase the interaction be-

tween robots and their environment. The first robots were only able to perform

repetitive tasks. These robots were hardwired so there was no possibility of chang-

ing their behaviour. In order to introduce interaction between humans (such as

the programmer) and the robot, people introduced robots that were able to be

reprogrammed.

The problem with these robots is that they must be programmed for each new

situation. Indeed, a programmer cannot design all the possible situations. This

is especially true for robots which have to operate in unconstrained environments

where people move about too.

To be efficient, a robot must interact with its environment. It has to be able

to react correctly to unknown events that can occur. Learning by experience is

then a useful feature we can implant on a robot. In this thesis we are particularly

interested in corridor following and egomotion estimation using visual flow. These

are two features that are needed to navigate correctly using a map provided by

the user.

Egomotion estimation is also needed as feedback for odometry. Indeed, wheel

encoders are often not accurate. Imagine the difference between a robot driving a

long distance on a road and the same robot driving on the sand. In the first case,

the robot is moving forward and the odometry system is approximately recording

the right distance. In the second case, the robot just slips, but the odometry

system records a long distance. This recorded distance is wrong because it should

12



CHAPTER 1. INTRODUCTION 13

be approximately zero. The slippage confuses the odometry system because it

involves an unknown friction coefficient. This situation is quite frequent in indoors

environments too. If a robot is stuck against a wall, its wheels turn but the robot

does not move.

On some robots, we cannot use wheel encoders to give us an idea of the

distance travelled so far. Basic examples are helicopters, submarines, legged

robots and any robots which do not have wheels. In these situations, egomotion

estimation can be essential.

1.2 Related work

Usually, when a robot is being built, people tend to use optic flow to control the

behaviour of the robot. It is a powerful way to perceive distances from a sequence

of images. It can be computed using different algorithms [23, 5, 2]. With optical

flow it is possible to build robots able to navigate in complex environments.

Obstacle avoidance and corridor following can be done using optic flow. For

instance, in [7] the game of tag was programmed on two robots using obstacle

avoidance based on optical flow.

Optical flow is also used for automatic road following in vision-based intelligent

vehicles [3]. However, optical flow needs a lot of computation. So it requires a lot

of processing power which is usually not available on mobile agents. That is why

this thesis tries to investigate other methods of navigation which do not require

a computation of the optic flow. We want neural networks to estimate the optic

flow for us.

Learning methods have already been used a lot in order to mimic animal

behaviour. Some of them use optic flow as a preprocessing stage [25, 26], other

use simpler versions of optic flow (one dimension optic flow for instance [32]), and

other do not use optic flow at all. We will focus our work on the third category,

this being the vision of the flies has been modeled with neural networks without

using optic flow [13]. Our goal is to build a corridor following robot that is able

to learn its task.

Another study about animals concern the visual path integration. Srinivasan

has focused his study specifically on bees [28, 29]. This study has lead to con-

struct of a robot that uses of the visual system of a bee. Unfortunately, the
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implementation uses two cameras [12]. It has been shown that bees can still es-

timate how far they travelled even if they only use one eye. So our second goal

is to estimate the egomotion of a robot by using a learning method and only one

camera.

Our aim is to create a new odometry system and use it to validate the existing

one. Such validation techniques are widely used in robotics. Sonars are usually

used to do this, but any sensors can be used to reduce odometry errors [15, 30].

For instance, the article [24] describes a general method to reduce odometry errors

using another sensor.

The following sections will briefly describe the experiments done and the re-

sults extracted from these experiments.

1.3 Experimental approach

In order to reach our goals, we preferred an experimental approach. Simulation is

not appropriate especially because of the visual input. Visual inputs are hard to

simulate properly. Even if we can simulate proper visual inputs by using physics

of light for instance, it will require a lot of computation time.

Furthermore, the real world is such complex that is almost impossible to

model it correctly. The simulation will suffer from this lack of complexity and,

when tested, the robot will perform badly. Moreover, it is also hard to simulate

noise. Unfortunately, noise is often a key issue in robotics. Thresholds are often

adjusted according to the amount of noise. Therefore it is better to make real

experiments instead of simulations.

For this project, experiments were made without using simulation.

1.4 Experiments

Different experiments were done to build a robot that can follow a corridor. For

the first version of a corridor following robot, a camera was always pointing to-

wards the direction of the navigation, that is, towards the end of the corridor.

This experiment was done with a robot called FortyTwo which has the particu-

larity of having a turret that can turn independently of the rest of the robot.

After a change in the hardware of FortyTwo, we could not do the any other

experiments with it. So another robot called Charm was used. The camera was
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not able to stay in a fixed direction with Charm. So we had to change completely

our way of performing the corridor following.

The new algorithm done, we had problems to teach the robot how to follow

corridor because of the computation time required. So we simply build another

corridor following program which was not able to learn but only to follow corri-

dors. We then used this hardwired program to teach the first program how to

learn to follow a corridor.

At least, we build a robot that was able to estimate the distance that it

travelled. During this experiment, the robot was also self taught. It simply went

forward, took pictures of the room and recorded odometry measures during the

same time.

1.5 Results

The first corridor follower built using the robot FortyTwo was not perfect. This

was due to the way the robot was trained. But the results let us hope that it is

possible to build a corridor follower using FortyTwo. We simply could not test

this corridor follower because of the change in the hardware.

The version of the corridor following robot using automatic learning gave

good results. The robot was trained in one corridor and tested in three different

corridors and it worked successfully. The program designed to teach used ceiling

as landmarks, but the program that learns used lights as well as ceiling to do

the same task. This brought robustness to the program. During the tests, the

travelled paths were very close to their mean path. The original orientation of the

robot for successed taken paths was also studied. It reveals that the algorithm

is relatively robust to the choice of this angle provided that it is in a fixed range

(from −10◦ to 30◦).

Finally, the distance estimation experiments showed that for long distances

it performs better than the internal odometry based on wheels. For shorter

distances the internal odometry performs better.



Chapter 2

Mechanisms

2.1 Tools

Two robots were used for this project: FortyTwo, a Nomad 200 and Charm, a

Nomad Scout. All we have to know for now is that both run the Linux operating

system and use a frame grabber which is able to take images at a resolution of

640x480 pixels. These robots are described in more detail in sections 3.2.1 and

3.3.1, respectively.

The only inputs used in the experiments performed are a sequences of images

grabbed by the CCD camera and the internal odometry of the robot. Internal

odometry is only used during a learning stage. So the robot performs its task by

using visual sensors and only visual sensors. Furthermore, sonars and infrareds

have been used in a safety procedure in order not to damage the robot.

In this chapter I am going to talk about the vision process used to transform

the sequence of images into consistent outputs for the tasks. Figure 2.1 describes

the mechanism used for both corridor following and ego-motion prediction.

The video camera continually grabs pictures. These pictures are processed in

order to extract features. Then a neural network predicts the output using the

features of the picture and possibly the difference between the current picture

and the last one.

For the corridor following, the requested output is the direction to follow given

by the steering angle. The neural network uses only the current image for this

part of the project.

For the ego-motion estimation, the requested output is the distance between

the two frames whose features were provided to the neural network.

16
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Image processing

Neural network

Movement Distance estimation

Features at time t and t + 1CCD

Figure 2.1: Overview of the mechanisms used. The images grabbed are processed
to extract features which are used as inputs for a neural network. The neural
network then predicts the result, which can be either a steering angle or a distance
estimation.

The following sections describes in more detail which features were extracted

from the frames and which neural network architectures were used.

2.2 Vision tools

2.2.1 General vision tools

In figure 2.1, we see that the first step is an image processing algorithm that

extracts features from the image. This step is a very important one. The accuracy

of the results depends on the accuracy of the features extracted.

Indeed, if a neural network is trained with poor features, it provides a poor

result. For instance, if we only used the features “the image is bright” and “the

image is not bright”, no algorithm can predict the movement the robot has to

do. If we only use these features, there is not enough information to decide

whether the robot has to turn right or to turn left. So we need an adequate

image processing mechanism to extract useful features.

A useful feature has to provide meaningful information. Edges are a feature

that is widely used in machine vision and that hold relevant information for most

applications. Indeed, ego-motion computation has already been calculated using

edge detection, using optical flow [23, 26, 25, 28]. This proves that the edge

information is sufficient to compute travelled distances. Here, we expect neural

networks to compute this for us, or expect at least to provide an estimation of

this computation.
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A
B

A′

B′

Figure 2.2: Useful features of edge detection. Two successives frames are shown
in dashed lines and dotted lines. The distance travelled by the robot can, under

certain conditions, be found using vectors
−→
AB and

−−→
A′B′

Another strength of edges is the fact that there are a lot of edges where there

are a lot of objects. Indeed, borders and textures of objects produce a lot of

detected edges. This is useful for corridor following. With these features we can

estimate the location of the objects on the images using simple computations.

We also expect the neural network to estimate wheel movements using these

computations. The next section describes the computations used as preprocessing

for the neural network inputs.

Different edge detectors were tried, but the best results were obtained using a

Difference of Gaussian edge detector. This edge detector is powerful and cheap.

It saves a lot of computation time because each pixel on the edges image is simply

a thresholded linear combination of its adjoining pixels. This computation can

be done by storing only three lines during the algorithm. So this edge detector

is memoryless and efficient.

2.2.2 Vision tools for the corridor following

2.2.2.1 Histograms

In order to follow a corridor, a robot has to go forward while avoiding walls. To

move forward is not a problem for a robot. The problems arise when it has to

avoid walls.

Usually walls generate edges. So if there are a lot of edges detected on the

right of the picture, the robot has to turn left, and if there are a lot of edges
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detected on the left, the robot has to turn right. So we can simply count the

number of pixels on the left of the edge-detected image and the number of pixels

on the right. We can then compare them and decide which way the robot should

turn.

I have implemented this behaviour on FortyTwo. It does not work properly

because the two walls do not generate the same number of edges. For instance, we

can have one wall which is mainly blank and does not generates a lot of edges, and

the other wall can be covered by posters or notices. The second wall generates a

lot of edges even if the distance between the robot and this wall is the same as

the distance between the robot and the other wall. So the robot tries to avoid

posters and notices which give good edges instead of the wall itself.

The idea developed in [16] is to split the image into vertical stripes and then

count the number of edges detected. This enhances the horizontal location of

edges in the image. Indeed, the vertical location of edges does not provide any

useful information for a corridor follower. So this feature is more powerful than

edge detection only because it contains almost the same quantity of information

and it is clearly using less parameters. Figure 2.3 gives us an example of a

histogram we can obtain with this method. This histogram is called in this thesis

“histogram of the image”. This is not a generic name for this kind of method but

it makes the method easier to be referred to.

(a) Edge-detected image (b) Histogram of (a)

Figure 2.3: Vertical histogram of an image. An edge detection was performed
on the image which gives the edges image 2.3(a). This edges image is then split
into 64 vertical stripes and figure 2.3(b) gives us the histogram of the number of
edges pixels per stripe.

We notice that this method is only viable if the camera is always pointing

towards the end of the corridor. Having a camera which is constantly pointing
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in a fixed direction is only possible with FortyTwo, not with Charm, because

FortyTwo has a turret which can rotate independently of its base. In the next

subsection, I describe a method which I have used for the case of a camera that

turns with the robot.

2.2.2.2 Hough transform

If the camera does not point in a fixed direction, the left wall is not always on

the left-hand side of the image, and the right wall is not always on the right-hand

side of the image. So in this case, the computation of an histogram of the image

is not a solution.

A feature that can be computed is the angle of each of the lines which con-

stitute the edges image, and a fixed direction. This idea has already been im-

plemented in industrial robots such the plant-scale husbandry robot described

in [31]. I have taken the vertical direction as the reference direction. It is good

to notice that this feature is relevant only if the camera is pointing upwards or

downwards, or only the upper or the lower part of the image is used. Indeed, in

the edges image, a wall produces lines that form angles of different sign with the

reference direction, depending on whether they are in the upper or the lower part

of the image. However, if the camera is looking upwards, a wall generates lines

that form angles of the same sign, and the other wall generates lines that form

angles of the opposite sign. Indeed, all the strong lines seem to intersect at the

end of the corridor. Figure 2.4 summarizes this.

(a) Camera looking forward (b) Camera looking upward

Figure 2.4: Edge-detected images of a corridor. Figure 2.4(a) shows an edges
image of a corridor when the camera is looking forwards and figure 2.4(b) shows
an edges image of the same kind of corridor when the camera is looking upwards.

The problem is to calculate the angle of each line in the edges image. A



CHAPTER 2. MECHANISMS 21

common way to do this is to use a Hough transform. The Hough transform is

described in [27]. The idea is to use an accumulator array which computes a

strength for each line by a voting mechanism. This accumulator array is called

Hough space. The dimension of the Hough space is defined by the number of

geometric parameters we need to describe a pattern. These parameters describe

the position or the scale of the pattern we want to recognize. We must be able to

restore the original pattern using these parameters. Here, the pattern is a line,

so the dimension of the Hough space is two.

I chose the two parameters as follows. The first one is the distance between

the centre of the image and the line, and the second one is the angle between the

line and the vertical. So each line in the edge-detected image corresponds to a

unique point in the Hough space.

In order to find the lines that are correctly detected in an edge-detected image,

each point that forms a line will vote for the corresponding parameters. So in the

Hough space, a strong value correspond to a line which is well detected by the

edge detector, that is, a solid line in the edge-detected image. We can then select

the best lines by selecting the stronger values in the Hough space. This procedure

is reliable and widely used in machine vision. Figure 2.5 shows an example of

line detection using a Hough transform.

In order to compute the Hough space, we have to change one of the two

parameters, for each point in the original image. Knowing that the point we are

dealing with is on the line, if we know the distance from the line to the centre,

we can find the orientation of the line. It is the same if we know the orientation

of the line, we can then find the distance between the line and the centre of the

image. The second calculation seems to be simple, and so more efficient on a

computer.

Figure 2.6 shows the situation when we try to compute the distance between

a line and the centre of the image. (x0, y0) denotes the point we are currently

considering, and (x1, y1) denotes the point located at the centre of the image.

D denotes the distance between the line and (x1, y1) and
−→
V is the normal to

this line. The norm of this vector is 1. Finally, θ denotes the angle between the

vertical and the line. The aim is to compute D using the other parameters.
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0
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90

0

d_max

Thresholded Hough spaceHough space

-90

90

0

d_max0

Edge-detected image

Figure 2.5: Example of the Hough space of an image. The figure shows the
result of an edge detection and its corresponding Hough space. An example
of the effect of a line and a group of lines on the Hough space is shown. The
thresholded Hough space also shows that these lines are strongly detected by the
edge detector. d max is half the length of a diagonal of the image.
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So

D = |cos(θ) (x1 − x0) + sin(θ) (y1 − y0)|

−→
W−→

V
(x1, y1)

(x0, y0)
θ

D

Figure 2.6: Calculation of the distance for the Hough transform. (x1, y1) denotes
the point located in the middle of the image and (x0, y0) denotes the point we
are currently using in the algorithm.

So we can see that the distance D can be easily computed if we know the

angle θ. Therefore I used the angle θ as the varying parameter to compute the

Hough space.

The following algorithm is then used to compute the Hough space (the Hough

space is represented by a two dimensional array in this algorithm):

compute the edge-detected image using an edge detector.

set all the elements of the array to 0.

for each point in the edge-detected image that is detected

as part of an edge, do:

for each angle between -90 degrees and 90 degrees, do:

* compute the distance between the line which goes

through the point and is directed by the angle,

and the centre of the image.

* in the array, increment the value of the element

labelled by the angle and the computed distance.

done.

done.
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for each element of the array do:

* if the value of this element is greater than a fixed

threshold then the element is set to 1.

* set the element to 0 otherwise.

done.

return the array.

This procedure returns an array which is labelled by angles and distances.

We can then use the angle by computing a histogram of the Hough space in

the same manner as we computed histograms of images. We can also use the

distance information by computing the corresponding histogram. Nevertheless,

the distances seem to be less important than the angles. So I used wide stripes to

compute the histogram for distances and small stripes to compute the histogram

for angles. I then concatenate those two histograms and use it as input to a

neural network.

2.2.2.3 Probabilistic Hough transform

Even if the formulas are pretty simple for the computation of the Hough space,

it takes too much time to compute the Hough space of an image. If we use the

algorithm described in section 2.2.2.2, it takes more than 50 seconds on a 486

PC to perform the Hough transform for a single image. This is too slow for

usual operations. So I tried to optimize the computation using both practical

and theoretical ideas.

First of all, I decreased the size of the Hough transform so that there are fewer

labels and so the part of the algorithm which applies the threshold to the Hough

space can be executed quicker. I also precomputed the sine and cosine functions

because these functions use a lot of processing power. All the values needed were

stored in an array. This array can be used to get values of sine and cosine of

angles very quickly.

Another idea which is described in [17] is to slightly change the Hough trans-

form in order to compute the parameters for fewer points. Indeed, it has been

proved that computing parameters on only a fraction of the points is enough. The

ratio depends of the complexity of the image, but a common ratio is 5%-15%.
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This way of implementing the Hough transform is known as the probabilistic

Hough transform.

The probabilistic Hough transform was implemented by choosing a ratio of

20% to be sure to keep a decent amount of information. I have not chosen to

take points randomly in the image, but take points randomly along lines. I have

computed parameters for 20% of the points for each line. This is more practical

because the frame grabber provides the image line by line. So this avoids the

problem of storing too many lines in memory. We can see in figure 2.7 that the

thresholded Hough spaces does not look different for the Hough transform and

the probabilistic Hough transform.

Hough
transform

probabilistic
Hough

transform

threshold
100250

threshold

Hough
space

Hough
thresholded

space

Figure 2.7: Difference between the Hough transform and the probabilistic Hough
transform. The figure shows a Hough space and its thresholded version for both
standard and probabilistic Hough transforms. Note the different threshold values.

We also notice that the thresholds are different because the peak values are

not so strong in the probabilistic Hough space as in the standard Hough space.
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Indeed there are fewer points that can vote in the probabilistic Hough transform

than in the standard Hough transform.

2.2.3 Vision tools for the egomotion prediction

Egomotion estimation requires the notion of difference between images. A dis-

tance cannot be computed with only one picture. We need two pictures to com-

pute it.

Egomotion can be computed, in some circumstances, using optic flow. Optic

flow is detailed in a number of articles and books [27, 10, 23, 2]. For this thesis,

we only want a neural network to estimate the right computation. So we do

not need to compute optic flow explicitly. The only preprocessing used was edge

detections and histograms.

In order to compute the egomotion, I used histograms of the two images in

both vertical and horizontal directions. In this case we need both horizontal and

vertical information because almost all the points of the original image move

in both directions. So both kind of histograms provide information. For both

images, I concatenated the vertical and horizontal histograms and subtracted the

two resulting histograms to provide a set of inputs for the neural network.

The last step is justified by the fact that the neural network takes a linear

combination of the inputs and there is no reason to give greater importance to

one image compared to another. Furthermore, this operation, in addition to

the previous operations, reduces the number of inputs we have to provide to the

neural network. This is a worthwhile operation because it reduces the complexity

of the neural network and also the complexity of the calculations. Decreasing the

number of inputs saves us a lot of computation time, which is a critical resource

in our application with a 486 PC.

Histograms do not seem linearly dependent on the distance. Indeed, an object

can generate different changes in the image for the same travelled distances,

depending on its position in the scene. A object which is close to the camera

generates big changes and an object which is far away generates almost no changes

in the histograms. Therefore a simple on-line Pattern Associator is not sufficient

to learn the relationship between histograms and distances. I have used a multi-

layer Perceptron instead of a simple Perceptron in order to learn this relationship.
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2.3 Off-line multi-layer Perceptron

2.3.1 General description

In mathematical terms, a neural network is simply a function with some param-

eters called weights. This function can be build using a simple element called a

neuron. A neuron can be represented by the figure 2.8.

z

g

x1 x2 . . . xn

3� k

6

Figure 2.8: Model of a neuron. The output z is calculated using some parameters
{ci}i∈[1,p] and a function g : z = g (x1, x2, . . . , xn, c1, c2, . . . , cp).

The function g is composed of a linear combination of inputs which is called

potential and an activation function f . The potential ν of a neuron is defined by:

ν = c0 +
n
∑

i=1

ci · xi

where c0 is a constant called bias. The bias can be introduced into the sum by

introducing a new input of the neuron whose value is always 1. The bias then

becomes the parameter associated with this value. So we can write:

ν =
n
∑

i=0

ci · xi

where x0 = 1. We can then compute the returned value z using the formula:

z = f(ν) = f

(

n
∑

i=0

ci · xi

)

The activation function used is the hyperbolic tangent function or sigmoid.

Other sigmoid functions such as x 7→ 1
1+e−x could be used as activation functions.

These neurons can be combined into a network by providing inputs for neurons
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using the outputs of other neurons. Such a network is called a neural network.

So a neural network can have different number of inputs or outputs, and different

architectures.

We are particularly interested in an architecture called the multi-layer Per-

ceptron, which figure 2.9 shows. It is composed of p layers, l1 to lp. Each layer

is fully connected to the next layer. The output layer has a linear activation

function. The other neurons have a sigmoidal activation function.

. . .

· · ·

· · ·

x1 x2
xn· · ·

lp

...
...

l2

l1

z

Figure 2.9: Model of a neural network. The output layer uses a linear activation
function and the other neurons use a sigmoid activation function. Each layer is
fully connected to the next layer.

We also need a way to assess the performance of the learned mapping. The

evaluation of the error is done using the sum-of-squares error function over a

set T . The set T is a set of pairs. Each pair is composed of an input and the

corresponding desired value of the output (target) of the neural network. The

sum-of-square function is:

ET (w) =
1

N

N
∑

i=1

Ei(w)
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where w is a vector of weights, N is the number of samples in the set T and

Ei(w) = (di − zi(w))2

zi(w) is the image of the ith input of the set T calculated with the weights w. di

is the corresponding desired value. Ei(w) is the square of the difference of the

result of the neural network for a particular input and the desired value.

This error function has to be minimized with respect to w according to a

learning set. The result of this minimization gives us a set of weights which form

a trained network. For each regular function, we can find a neural network that

can fit this function with an arbitrary precision.

We can assess the performance of the training using a test set which is different

from the learning set. The computation of the sum-of-square error over this test

set gives us a measure of the performance of the neural network.

2.3.2 Propagation and backpropagation

The gradient of the sum-of-square error function of a multi-layer Perceptron is

calculated using the backpropagation algorithm. The propagation algorithm is a

preliminary of the backpropagation algorithm.

In order to explain how these two algorithms works, I have to number the

neurons from left to right beginning by the layer l1, then the layer l2, and so

on. Let wij denote the weight of the link between neuron i and neuron j. Let

Fi denote the set of neurons whose output is an input of the neuron i. νi is the

potential of the neuron i, and zi is the returned value of the neuron i. Finally,

let Ni denote the set of neurons whose set of inputs contains the output of the

neuron i.

The propagation algorithm propagates an input vector {xi} through the net-

work. It is used to compute the output of the neural network knowing the inputs

and the weights:

For i from 1 to the number of neurons, do:

• For the inputs of the neural network, we define:

zi = νi = xi



CHAPTER 2. MECHANISMS 30

• For the other neurons of the neural network, we have:

νi =
∑

j∈Fi

wji · zj

zi = fi (νi)

• For the last neuron of the neural network, we have:

z = zi

Done.

This algorithm computes the value of the potential of each neuron. These

values are used by the backpropagation algorithm which computes the gradient of

the sum-of-square error. It computes ∂Ek

∂wij
for each weights and for each example,

k, in the training set. The algorithm is based on the following factorization:

∀j ∈ Fi,
∂Ek

∂wji

=
∂Ek

∂νi

· ∂νi

∂wji

=
∂Ek

∂νi

· zj

We know that dk denotes the desired output of the neural network if {xi} is

the input vector. For the last neuron, we have:

∂Ek

∂νi

=
∂Ek

∂z
· ∂z

∂νi

= −2 (dk − z) · f ′
i(νi)

where i is the number of a neuron located on the layer lp, and z is computed with

the propagation algorithm. For the other neurons, we have:

∂Ek

∂νi

=
∑

j∈Ni

∂Ek

∂νj

· ∂νj

∂νi

but:

νj =
∑

i∈Fj

wij · zi =
∑

i∈Fj

wij · fi(νi)

thus:

∀j ∈ Ni,
∂νj

∂νi

= wij · f ′
i(νi)

finally:
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∂Ek

∂νi

= f ′
i(νi)

∑

j∈Ni

wij ·
∂Ek

∂νj

These computations can be summarized with the following algorithm :

For all couple of inputs/output in the training set, do:

• Propagate the kth input vector into the network using

the propagation algorithm.

• For i from the number of neurons to 1 do:

– If the neuron i is the last neuron, compute:

∂Ek

∂νi

= −2 (dk − z) · f ′
i(νi)

– Otherwise, compute:

∂Ek

∂νi

= f ′
i(νi)

∑

j∈Ni

wij ·
∂Ek

∂νj

Done.

• For each weights wij, compute:

∀j ∈ Fi,
∂Ek

∂wji

=
∂Ek

∂νi

· zj

where zj has been computed with the propagation algorithm.

Done.

Two methods were used for the minimization of the error function. In a first

stage, we try to approach a minimum of the error function using a gradient de-

scent. In a second stage, we use a Quasi-Newton algorithm to find the minimum.

The Quasi-Newton algorithm is only valid in a neighbourhood of the minimum.

It has to be initialized with a point close to the minimum. That is why we have

to use a gradient descent before using the Quasi-Newton algorithm. The next

section describes these two minimization algorithms.
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2.3.3 Learning algorithms

2.3.3.1 Gradient descent

The method of gradient descent is one of the most fundamental procedures for the

minimization of a function E of several variables. In order to find a minimum, we

begin at random values for the variables, which gives us a point w0 in the original

space. We can then choose another point by moving in a direction d. The new

point must have an image that is smaller then the image of the previous point.

We then move again in another direction that decrease the value of the function

to find another point, and so on.

Using this idea we keep decreasing the value of the function until we found

a minimum. For each iteration, the first step is to find the right direction. We

have to choose a descent direction. As we know that the opposite of the gradient

is the steepest descent direction, we can choose the direction dk for each point wk

as follows:

dk = −∇E (wk)

A second step, which is harder to find, is the length of step along each direction

dk. If the step is too big, the algorithm can diverge. If it is too small, the algorithm

takes a long time to converge. Some choices like a step of 1
k·‖∇E(wk)‖

are proved

to converge [18]. However, these methods are often slow. Here, our goal is only

to get quickly close to a minimum. So we can take a step of η
‖∇E(wk)‖

where η is

a constant. With this step, we are also sure that the algorithm will not diverge

until a big number of steps because the distance between two points is less than

1.

So the algorithm becomes:

Choose a random point x0.

For k from 1 to a fixed number of iterations:

wk+1 = wk − η
∇E (wk)

‖∇E (wk)‖

2.3.3.2 Quasi-Newton algorithm

As the former algorithm is slow, especially in the neighbourhood of a minimum,

we need a more powerful algorithm to find the minimum quickly. The Quasi-

Newton algorithm is based on the idea that a function looks like a quadratic
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function near its minimum. In the case of a quadratic function, we have :

wminimum = w0 −
(

∇2E(w0)
)−1 · ∇E(w0)

so if we use this equation to update the weights, the new weights should be close

to the minimum. The minimum can then be reached in a few steps. In the ideal

case of a quadratic function, the minimum is found in one iteration.

In practice, the computation of the Hessian of E is very slow, so the conver-

gence speed of this algorithm is not really as good as it is supposed to be. It is

usually better to approximate the Hessian matrix in order to find a good descent

direction. The BFGS (Broyden, Fletcher, Goldfarb and Shanno) formula was

used to approximate the Hessian [1]. The descent direction becomes:

dk = −Mk · ∇E (wk)

where Mk is computed using the BFGS formula:

Mk+1 = Mk +

[

1 +
γT

k ·Mk · γk

δT
k .γk

]

δk · δT
k

δT
k .γk

− δk · γT
k ·Mk + Mk · γk · δT

k

δT
k .γk

where δk = wk+1 − wk and γk = ∇E (wk+1)−∇E (wk).

Even if the BFGS formula preserves positive definiteness, the computation of

Mk can lead to a matrix which is not positive due to rounding errors. So for each

iteration, we must have δk · γk > 0. If it is not the case, we simply initialize Mk

to the identity. It is proved that (Mk) tends to (∇2E(w))
−1

[18]. So the formula

tends to produce the same result as the idea formula used for a quadratic curve.

We also need the step for the update as it was the case in the gradient de-

scent. Now this stage is more important because the minimization requires more

precision near the minimum. However, the Quasi-Newton algorithm is not very

sensitive to the step chosen. Thus, we can use a simple and efficient algorithm to

choose this step like the Nash method [18].

These stages combined together lead to the following algorithm:

Initialize a tolerance factor τ between 0 and 1.

Initialize a reduction factor r between 0 and 1.

Initialize the weights w0.

Initialize k = 0, g0 = ∇E (w0), M0 = I, d0 = −M0 · g0, and µ = 1.

Do:
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• Step 1:

If E (wk + µ · dk) ≤ E (wk) + µ · τ · gT
k · dk accept µ.

Else compute µ = µ · r and go back to step 1.

• Step 2:

Compute the new weights wk+1 = wk + µ · dk.

Compute the new gradient gk+1 = ∇E (wk+1) using

the back propagation algorithm.

Compute the new matrix Mk using the BFGS formula.

Compute dk+1 = −Mk+1 · gk+1.

Initialize µ to 1 again for the next iteration,

and increment k.

Until a certain number of iterations is reached or

until the weights are almost not changed

during the iteration (‖gk‖ ≈ 0).

In practice, this algorithm works fine with small networks. Indeed, the di-

mension of the matrix Mk is the square of the number of weights of the network.

So this matrix takes a lot of space in memory. This becomes a problem when

we begin to use networks with a few thousand weights. In order to bypass this

problem, we used a memoryless version of the Quasi-Newton algorithm [4]. This

version is based on an approximation. In the BFGS formula, Mk is replaced by

the unit matrix I. We can then update the search direction using the formula:

dk+1 = −gk+1 + A · δk + B · γk

where A and B are two reals defined by:

A = −
(

1 +
γT

k · γk

δT
k · γk

)

δT
k · gk+1

δT
k · γk

+
γT

k · gk+1

δT
k · γk

and

B =
δT
k · gk+1

δT
k · γk
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As we can see, this version of the Quasi-Newton algorithm only requires to

store vectors and no matrix. So if W is the number of weights of the network,

the memory storage used is O (W ) instead of O (W 2).

2.4 On-line Pattern Associator

A Pattern Associator is a neural network with only one layer of neurons. This

architecture was only used with one neuron because we only needed one output.

The architecture used is shown in figure 2.10:

wN

i1 i2 i3 iN

w1 w2 w3

o

. . .

· · ·

Figure 2.10: Pattern Associator. Each input ik is weighted by the weight wk.
The activation function of the neuron is the identity function.

The output of the Pattern Associator is computed using the formula:

o =
N
∑

k=1

wk · ik = −→w · −→ı

The aim is still to minimize error between the expected value and the computed

value for given inputs. So the weights are updated using the following formula

[20, 19]:

−→w ← −→w + η (t− o)−→ı

where o is the current output generated by the Pattern Associator, t the corre-

sponding expected value, −→w the weights at the current iteration, −→ı the current

inputs and η a constant called learning rate. The learning rate may vary from
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one iteration to another. Considering the same arguments as the multi-layer

Perceptron, the following formula was used:

η =
1

‖(t− o)−→ı ‖
If the training examples are linearly separable, the Pattern Associator con-

verges [19]. Furthermore, another advantage of the Pattern Associator is its low

memory consumption. Each learning step, that is each application of the update

formula, only requires the current inputs −→ı and the current target t. It is not

necessary to store all the former training values. This avoids all the memory

problems we had with the multi-layer Perceptron. The update formula is also

simple. It does not require a lot of computing power. These points are key points

in embedded systems. So the Pattern Associator is well suited for robotics, as

soon as the training examples are linearly separable.



Chapter 3

Corridor following experiments

3.1 General experimental procedures

The corridor following experiments were done in two distinct parts. The two

parts were done with different robots, so the procedures used are different. I

describe the robots used in the relevant sections.

Usually, for testing or in regular use, the robot is autonomous and is not

controlled by the operator. If the robot has to follow a corridor, we do not want

the operator to modify the trajectory. The robot must perform its task by itself,

without hitting anything. I therefore implemented a safety procedure based on

infrared or sonar, depending which robot was being used. When a obstacle is

detected using these sensors, the robot turns until there are no more obstacles,

then moves forward for a while and finally restore its original direction by rotating

using the opposite angle, so that the direction is the same as before. The general

procedure used in normal behaviour is shown in figure 3.1. A neural network

is trained by the designer of the robot. This procedure is done only once and

produces a trained neural network that can be used each time afterwards. In

regular use, each preprocessed image is used as an input to the neural network

previously trained. The propagation of these inputs results in a prediction of the

right movement to do in that particular situation. The following sections explain

all the experimental procedures for each different experiment.

37
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operator

Training trained neural
network

Testing

movement

Done once by the operator

Done each time by the robot itself

features

features

Figure 3.1: General procedures for corridor following. The operator trains a
neural network which is used afterwards with a sequence of preprocessed images
to control the behaviour of the robot.

3.2 Experiments with FortyTwo

3.2.1 FortyTwo hardware properties

FortyTwo is a Nomad 200 robot from Nomadic Technologies Inc [21]. It is a

wheeled, fully autonomous robot.

FortyTwo has 16 sonars sensors, 16 infrared sensors and 20 bumper sensors.

These sensors are arranged in rings around the turret and the base.

FortyTwo has a three servo synchronous drive system powered by two 24 volt

batteries. This allows the user to control the speed of the wheels and turn the

turret and the base of the robot independently. There are two slots to plug

batteries for motor control in parallel. Table 3.1 summarizes the maximum speed

of each axes and other physical characteristics of FortyTwo.

The turret hosts a 486 PC (66 MHz) with 8 Mb of RAM and a 1Gb hard disk.

A separate 24 volt battery powers the processor. We can change the battery by

plugging another one in parallel without interrupting the processing. A speech

synthesizer card is connected to the PC to provide full speech capability for the

robot. A “video blaster” frame grabber is also connected to the PC in order to

use a CCD camera. This card has its own memory which is directly mapped

into RAM. A CCD monochrome camera is linked to it using a coaxial wire. The

camera can provide 640x480 pixels at a frame rate of 25 images per second, which
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joystick plug

floppy disk

video

on/off

CCD camera

sonars

bumpers

infrareds

emergency stop mechanism

Figure 3.2: FortyTwo

is more that the computer can process.

The robot can be controlled remotely via the Internet. Indeed, it is linked to

the network with a radio link. This wireless network interface allows the user to

run programs even if the robot is in another room or in a corridor. A graphical

user interface can also be used to see the state of the sensors and to control the

robot with a virtual joystick. The same graphical user interface can be used as a

simulator, by placing virtual objects modelled by polygons in the scene.

3.2.2 Description of the experiments

The first experiment was done in the laboratory using a fake corridor made of

boxes. The other experiments were in a real corridor. Each image grabbed by

the robot is processed as described in figure 3.3.

For all these experiments, the robot was continuously moving forwards using

a fixed speed. For each iteration, an image was captured and processed by the

robot as described above. The robot then turned its wheels towards the direction

computed by the neural network.

Another program was used to capture the position of the robot each time it
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Table 3.1: Physical characteristics of FortyTwo

diameter 53 cm
height 76 cm
weight 59 kg
payload 23 kg
maximum speed 50 cm/s
maximum steering speed 60 degrees/s
maximum turret speed 90 degrees/s
active range of sonars 15 cm to 10.60 m
accuracy of sonars 1 %
resolution of sonars 2.5 cm
active range of infrareds 0 cm to 60 cm

moved, in order to see how well the robot performed.

The experiment was done in two parts. The first part is the learning part.

The experimenter trained the robot with the joystick. In the training stage, the

target output was taken from the joystick and the inputs from the processed

image. In the testing stage, the inputs of the neural network was taken from the

processed image, and the output was computed using the propagation algorithm

which is only a weighted sum here.

3.2.3 Results

Figure 3.4 shows the first experiment done with FortyTwo. The camera was not

correctly oriented during the beginning of the testing. After a few iterations, I

oriented it correctly so that it looks towards the end of the corridor. The camera

was correctly oriented during the training which is represented by the sparse

points in the odometry records shown in figure 3.4.

We see that the robot is able to follow the right direction after a while. The

movement is smooth thanks to the way we drive the robot using a constant speed.

It is interesting to see that at the beginning of the experiments the robot tries

to avoid a box which is in front of it. The robot not know which way to go to

avoid the box because the box does not generate a lot of edges when seen from

this point of view.

Results of experiments done in the real corridor are shown on figures 3.5(a)

and 3.5(b). These figures show that the robot does not take the right direction,
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...

...

steering
angle

histogram of the image

edge-detected image

CCD camera

Figure 3.3: Overview of the experiments with FortyTwo. Each image is processed
by the edge detector in order to extract the histogram of the image. The values
given by the histogram are then processed by a Pattern Associator in order to
compute the steering angle used for the movement.

but a slightly different one. Indeed, it has not be trained enough to perform its

task accurately. Furthermore, the Pattern Associator used did not contain any

bias. Adding a bias, that is a constant input, should correct this behaviour.

A change in the hardware used prevented us from doing other experiments

with FortyTwo. Further experiments in corridor following were done with another

robot: Charm.

3.3 Experiments with Charm

3.3.1 Charm hardware properties

Charm is a Scout robot from Nomadic Technologies Inc [14, 22].

Charm is not independent. It has to be controlled by a host computer via

a serial link. A Motorola MC68332 main processor is responsible for this com-

munication and a DSP processor is responsible for the motor control. Table 3.2

summarizes its physical characteristics.

Charm is equipped with 16 sonar sensors and 6 independent bumper switches.

It has a two wheel differential drive system. The user can provide the speed of
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Figure 3.4: Experiment with FortyTwo in the laboratory. This figure shows the
odometry records during the first experiment. The sparse points represent the
training set and the regular spaced points represent the testing. At the beginning
of the testing the camera was not looking in the right direction. It was adjusted
after a few testing iterations.

each motor independently.

Charm is controlled by a 486 PC running Linux via its serial port. Therefore,

the software of the Scout provided by Nomadic Technologies is mostly compatible

with the software of the Nomad 200 [21, 22]. This allowed us to change the robot

during the project and to run the same code with only a few changes in it. The

same graphical user interface as FortyTwo’s one can be used with Charm.

3.3.2 Difference in the hardware between FortyTwo and

Charm important for the corridor following

The first difference comes from the way to give orders to the motors of each robot.

The fact that Charm uses the serial port to receive orders does not allow us to

control it from different programs. This restriction can be bypassed by using

threads in the program that controls the robot.

The different drive systems have also a great impact on the way of program-

ming each robot. As we can see on figures 3.7(a) and 3.7(b), FortyTwo is able

to turn its turret independently of the position and speed of its other axes. Fur-

thermore, in our experiments, the camera was placed on the top of the turret. So
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Table 3.2: Physical characteristics of Charm

diameter 41 cm
height 35 cm
weight 23 kg
payload 5 kg
maximum speed 1.0 m/s
maximum acceleration 2 m/s2

encoder resolution:
translation 756 counts/cm
rotation 230 counts/degree

we were able to fix the direction of the camera.

With Charm, it is not possible to fix the direction of the camera anymore.

Indeed, only the speed of the two wheels can be controlled. So all the parts of

the robot are turning when we have to turn the robot, including the camera.

Another points with differs is the way we moved with FortyTwo. It is not

possible to specify a constant speed without a lot of computation. The fact that

FortyTwo had different axes for the steering angle and for the speed of the wheels

makes it easier to drive. For Charm, it is better to adopt another way of control.

3.3.3 Modified corridor following

3.3.3.1 Description

In order to learn a correct mapping with a Pattern Associator, it is better to have

a linearly separable mapping to learn. It is also better if we use a bias to give more

mapping possibilities to the Pattern Associator. As the camera is not looking at

a fixed direction anymore, we need to select better features. The histogram is not

a good feature anymore because it does not contain a lot of information about

the direction of the camera. Trying to find the angles between lines and a fixed

direction in the picture is a much better idea. These angles seem to change in

the same way as the angle between the camera and the direction of the corridor

does. That is why a Hough transform was used to process images with that kind

of motor control.

Figure 3.8 shows the process used to find the steering angle to use. Each image

grabbed by the robot is preprocessed by the edge detector in order to compute
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the Hough space of the image, using the probabilistic Hough transform. Then,

both vertical and horizontal histograms of the Hough space are computed. As

positions of the lines in the image is less important than angles in our case, the

thickness of the stripes are different for the vertical and the horizontal histogram.

45 stripes were used for the histogram which correspond to the angles, and only

5 stripes were used for the histogram which correspond to the distance of the

detected lines to the center of the image.

Furthermore, I used the joystick to teach the robot. In the training sequence,

each time an image is grabbed, the steering is checked in order to get a corre-

sponding steering angle. As the joystick overrides the program for the control of

the motors, the steering angle can be changed via the joystick. During the testing

stage, the joystick is not plugged in anymore, and the steering angle is controlled

by the program.

3.3.3.2 Results

The results of this experiment were bad. The robot simply went toward the

walls instead of following the direction of the corridor. Even when a multi-layer

Perceptron was used to learn the mapping between processed images and steering

angles, it did not improve anything. The neural network can learn the examples

from the training set, but is unable to generalize. The error computed on a test

set kept increasing as the robot was trained.

The problem with this experiment is the way of teaching the robot. Using

the joystick to teach the robot introduces some inconsistencies in the training

set. Indeed, it is very hard for a human to know exactly the right speed to

give to the steering. If the experimenter turns the robot too slowly, the robot

tends not to turn at all in the testing stage. If the experimenter turns the robot

too quickly, the robot can turn roughly 180◦ between two frames and look in the

wrong direction for the next frame. Unfortunately, the computation of the Hough

transform on a 486 PC is so slow that we were always in the second case, even if

we turned the robot slowly.

So the way of training the robot had to be changed. The geometry of the

robot does not allow humans to estimate correctly the steering needed to follow a

wall. Indeed, the camera is placed near the ground and is looking upwards. It is

not the usual way of following a corridor for a human. So we opt for an automatic

learning, that is, a program which taught the robot how to follow a corridor. The
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robot should then be able to generalize what it has learned. There are advantages

and drawbacks to this method. The main advantage is that the robot is able to

learn without the intervention of the human, so the learning stage produces a

consistent set. Another advantage is that the robot can use other landmarks, not

those that the designer used. A drawback is that the programmer has to find a

way of achieving automatic learning. So he has to program a corridor follower.

3.3.4 Corridor following without learning

The corridor follower programmed is based on the vision of the flies described in

[13]. The sensitivity of the vision is different for different area in the space. It is

the same for humans. If we are looking in front of us, the perception of an object

is less difficult if it is in front of us than next to us.

So the idea is to build a sensitivity function that acts as a filter and allows

good features to be correctly perceived and bad features to be difficult to perceive.

This function is shown in figure 3.9.

The values computed for the histogram which corresponds to the angles of

the Hough space are now multiplied by a perception factor. As we can see, angles

near 45◦ and −45◦ are well detected. On the contrary, angles near 0◦ and 90◦ are

not detected at all. Indeed this sensitivity function has been designed to rest on

diagonal lines in the image which correspond to strong edges of the ceiling. The

sensitivity function changes its sign around 0◦ because if we detect a strong line

at 45◦, we want to turn right, but if we detect a line at −45◦ we want to turn

left, that is we want to steer using a negative angle.

After applying this filter to the angle histogram of the Hough space, we simply

sum the results to find the steering angle we have to use.

As we do not use the joystick anymore for the algorithm, the program can

control the motors each time. So we can stop the robot for each processed frame.

This avoid blur in the image, and also assure us that the computed steering angle

will be used in a same position in the corridor as the inputs were taken.

During tests in a real corridor this algorithm performed very well providing

that the robot was correctly positioned at the beginning of the test. If the robot

is looking at a wall at the beginning, the robot cannot avoid it because it cannot

detect it. But in normal use, the algorithm seemed to perform correctly enough

to be used as a teacher for the automatic corridor learning.

A drawback that can be signalled is that if for one reason or another the
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landmark we used is hidden, the robot cannot choose the right steering angle.

For instance, if someone is standing in front of the robot far enough not to be

detected by the safety procedure and close enough to hide strong edges of the

ceiling, then the robot is lost.

3.3.5 Corridor following with automatic learning

3.3.5.1 Description

The experimental procedure is now quite similar to the experiment described in

section 3.3.3.1. The difference is that, instead of using the joystick to teach the

robot how to steer, the algorithm described above was used.

So in the learning stage, the robot stops for each frame. Then the corridor

following algorithm which does not implement any learning is used to find a good

steering angle. The Pattern Associator used in section 3.3.3.1 is then trained with

these inputs and steering angle. The robot turns using this computed steering

angle and then moves forward for a while before stopping in order to process the

next frame.

No human intervention is required during the training. This can be very

useful if the training stage takes a long time. Here, only a few tens of metre were

required to teach the Pattern Associator. This teaching was done in several times

because the robot was attached to its host computer with a wire that was shorter

than seven metres. With a longer wire, we could have done the training in one

step.

The testing stage is the same as it was in section 3.3.3.1.

3.3.5.2 Results

We expected that the weights of the Pattern Associator would match the per-

ception function that we designed or at least equivalent weights which produces

the same output for each inputs. Figure 3.10 shows the weights corresponding

to angles in the Hough space that were learned by the Pattern Associator in this

experiment.

The weights almost match the perception function. The difference comes

from horizontal and vertical detected lines. These lines correspond to the lights

in the corridor that are strongly detected by the edge detector because the lights

saturate the pixels of the camera.
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We can see that the Pattern Associator used an additional landmark to es-

timate the steering angle. This brings robustness to the algorithm. Indeed, if a

person hides the edges of the ceiling, the Pattern Associator can still estimate a

correct angle using the lights as landmarks. Of course, the robot will turn less

quickly, but it will at least turn in the right direction. If the lights are hidden

then the edges of the ceiling can still be used as landmarks.

The fact that the edges of the ceiling and the edges of the lights are usually

distinct and far from each other in the image makes it harder for a single person

to hide both features. So the learned relationship between images and steering

angle is robust and can be used in real environments.

In order to assess the performance of this corridor following algorithm, several

tests were made in different corridors. For each test, we used similar computation

as in [20] and [8] to correct the odometry and then compute a correct performance

measure based on the same characteristics of each trajectories. Figures 3.11(a)

and 3.11(b) show an example of corrected odometry. The first point should be the

same for each trajectories and the mean direction is also the same. This transfor-

mation is achieved by a combination of a translation and a rotation around the

first point.

This transformation allows us to compute the mean distance d between the

trajectory and the mean direction. This is a measure of performance. If this

measure gives a big value, then the trajectory is far away from its mean direction.

That means that it is more chaotic than a trajectory which small value of the

measure. Indeed in the ideal case, the robot follows the corridor in a straight

line, and so the measure gives us the value zero.

Figures 3.12(a), 3.12(b) and 3.12(c) show the results of the test of this algo-

rithm in three different corridors. With the measure of performance we have

chosen, we have da = 0.54 in = 1.37 cm, db = 1.96 in = 4.98 cm and

dc = 0.66 in = 1.68 cm. So we can see that there is not a big difference be-

tween the trajectories and their mean directions. In practice, the robot seems to

follow a straight line by going slightly on the right, then slightly on the left, then

slightly on the right, and so on.

We can note that the training was done in the first corridor, so the performance

of the first test is less realistic than the performance of the other. Indeed the

learning stage could have caught the basic configuration of the corridor, that is

the location of the doors and posters and the test could then be more successful
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in this corridor than the others. In fact, it is slightly the case, as we can see in

the results of respective performances.

In the second corridor, we can notice that one of the trajectories ends before

the end, and turns suddenly. This behaviour was caused by the safety procedure

which caught a door frame with the sonars. It should not have caught this

door frame because it was far enough, so it is certainly a freak sonar value as

it happens sometimes. Anyway this behaviour is not a failure in the corridor

following algorithm.

The algorithm used did not fail during the tests. However the robot was always

correctly positioned in the corridor, looking at the end of the corridor. Some tests

were done to estimate the robustness to the angle between the direction of the

corridor and the original direction of the robot. The table 3.3 shows the maximum

angle we can use to place the robot at the beginning if we want it to perform its

task.

Table 3.3: Maximum original angles between the robot and the corridor.

left right
Corridor one −11◦ 33◦

Corridor two −11◦ 33◦

Corridor three −11◦ 22◦

In order to find the figures of table 3.3, the robot has been tested by increasing

the original angle it did with the corridor. 11◦ has been added each time, and

when the robot failed, a second test was made with the same angle to be sure

that the robot usually fails with this original angle formed with the direction of

the corridor. So we can see that the allowed range of angles is not very wide but

sufficient enough to dispose the robot without accuracy at the beginning of a test

or in normal use. We could not expect a better accuracy because the program

that learned the robot how to follow a corridor what already not really good for

big angles.

We can also see that the robot performs better if it is oriented toward the

right than towards the left at the beginning. This could seem strange because

there is no differentiation between the left and the right in the algorithm. Indeed,

this difference comes from the layout of the first corridor where the learning took

place. There was a notice board near the start position on the left hand side.
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Because of this notice board, a big shadow projected on the wall prevented the

robot from learning correctly how to avoid a wall when facing it. On the contrary,

the right wall was correctly illuminated. So the robot could correctly learned how

to avoid a right wall when facing it.
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(a) Experiment one

(b) Experiment two

Figure 3.5: Experiments with FortyTwo in the corridor. The sparse points rep-
resent the training of the robot and the regular spaced points correspond to the
testing.
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bumpers

joystick serial link

Figure 3.6: Charm

(a) Drive system of
FortyTwo

(b) Drive system of Charm

Figure 3.7: Drive systems. FortyTwo has three independent axes, one control-
ling the orientation of the three wheels, one controlling the speed of the three
wheels and the last one controlling the orientation of the turret. Charm has two
independent axes, one controlling the speed of the left wheel and the other one
controlling the speed of the right wheel.
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Figure 3.8: Overview of the corridor following with Charm. The images are
preprocessed by the edge detector and then the probabilistic Hough transform
procedure. The vertical and horizontal histograms of the Hough space is then
processed by a Pattern Associator in order to return the steering angle.

Figure 3.9: Sensitivity function for corridor following. For each angle the value
computed for the histogram is multiplied by the corresponding perception factor.
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Figure 3.10: Weights learned by the Pattern Associator. The weights match the
perception function of figure 3.9 except for angles near 0◦ and 90◦. The detected
lines for these angles correspond to the lights of the corridor.

(a) Recorded odometry

(b) Corrected odometry

Figure 3.11: Correction of the odometry drifts. The raw values are translated
and rotated to have the same starting point and the same mean direction.
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(a) In the first corridor

(b) In the second corridor

(c) In the third corridor

Figure 3.12: Results of corrected odometry for all the experiments. The training
was done in the first corridor.



Chapter 4

Egomotion prediction

experiments

4.1 Experimental procedure

All the previous experiments in the corridor were using a single frame to control

the robot. When dealing with odometry, a single frame is not sufficient. We

have to use two frames and compute the distance between the two corresponding

locations in the room. All the experiments described in this chapter were done

in the robotics laboratory with boxes, tables and computers around.

The idea of automatic learning was applied once more. In the beginning, the

robot took a picture of the room. Then it moved forward for a random amount

of distance and took a second picture of the room. The distance between the

two locations was recorded with the internal odometry system. The robot then

moved for a random amount of distance again, took a picture, etc.

Figure 4.1 shows the processus which was used to preprocess the two different

pictures. Each picture was preprocessed by the Difference of Gaussian edge detec-

tor in order to extract both vertical and horizontal histograms. The histograms

were then concatenated. This gives us two vectors, one per original picture. A

possible solution is to concatenate these two vectors to form the input vector used

by the multi-layer Perceptron. But there is no reason to give bigger importance

to one picture compared to the other. Indeed, if we swap the two pictures, we

should end up with the opposite value. So if we concatenate the two vectors,

the learned weights corresponding to each vector should be of opposite values or

at least, equivalent. Therefore, it makes sense to subtract the two vectors. The

55
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resulting vector will be the input of the multi-layer Perceptron.

The neural network used this time is an off-line multi-layer Perceptron. This

means that we have to store each pair of training values composed by a vector

and a distance measured by the internal odometry. In consequence, the training

of the neural network is done after the data acquisition. It is possible to train the

neural network on another machine. As the robot hosts a very slow 486 PC, we

did the training on another computer: a Pentium r© III, 500 MHz. Even on such

a machine the computation is slow, so a small number of inputs was used due to

big stripes. In the experiments, the width of the stripes was 20 pixels for both

horizontal and vertical histograms.

Some experiments were done using a uniform probability U ([0, 100]) from

which random travelled distances were extracted. The distances were chosen

between 0 and 10 inches. Other experiments were using a gaussian distribution

N (50, 20). The distances were chosen with a average of 5 inches and a standard

deviation of 2 inches, in order to test the algorithm and to see how it performed

on a restricted window only. The algorithms which computed such distributions

were taken from [11].

4.2 Experimental results

Figure 4.2 shows that the multi-layer Perceptron was able to map a relationship

between the pairs in the learning set, that is, between vectors which represents

preprocessed images and distances. Indeed, the error computed using a test set

decreased during the minimization, so the multi-layer Perceptron performs better

and better during the minimization. The parameters used for this learning can

be found in table 4.1.

The ideal result of the mapping of the multi-layer Perceptron is the correct

distance for each test point. In order to assess our result, we want to see how

far away we are from the ideal mapping by studying the correlation between the

real output (measures from the odometry) and the computed output (estimations

from the multi-layer Perceptron). As the relationship should be linear, we have to

compute the correlation coefficient between the real and the computed outputs for

each test. Figure 4.3 shows the correlation between estimated and real distances

that we computed from a testing set. The linear correlation coefficient is 0.8. This

coefficient shows that a relationship exists between the real and the estimated
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Table 4.1: Parameters used for the learning of egomotion

multi-layer Perceptron:
number of layers 4
number of neurons in the input layer 53
number of neurons in layer 2 25
number of neurons in layer 3 10
number of neurons in output layer 1
Gradient descent:
number of iterations 60
value of η 0.01
Quasi-Newton minimization:
number of iterations 940
value of τ 10−4

value of r 0.3

output, but this relationship is not perfect.

We can also judge the results by plotting the real and the estimated distances

for each sample. This is done in figure 4.4. We can also plot the relative error for

each sample. Figure 4.5 shows the relative error of the samples corresponding to

the samples shown in figure 4.4.

The mean of the relative errors of random distances taken from an uniform

distribution is approximately 0.4, and the standard deviation is greater than 10.

Consequently, the standard deviation suggests that the result cannot be trusted.

However, we can note that this bad standard deviation is due to some extreme

values which look more like isolated cases than general cases. In fact we can

see that these isolated cases correspond to test samples with a small distance

measured by the odometry system. Ignoring these particular cases, the results

are better. Indeed, the mean and the standard deviation will be smaller. Of

course, the mean will not plummet too much, but we cannot expect the relative

error to be below 10% which is the accuracy of the odometry system used to

teach the robot how to estimate distances.

An idea that was worth trying is to eliminate small distances during the tests

by using a normal distribution centered on the same mean that the original uni-

form distribution used. This change gives us a windowed testing. Figures 4.6(a),

4.6(b) and 4.6(c) show that the results are not improved with this distribution.

The correlation coefficient is now 0.7 instead of 0.8 above. So the idea of windowed
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testing does not bring any better results.

However, robots are usually required to navigate for a long time and therefore

they travel a long distance. So when we want to design a navigation system, we

do not really want to worry about small distances. Long distances are definitely

more interesting because the internal odometry of a robot makes bigger mistakes

after a long distance than after a small distance. Indeed, errors done are often

cumulative because of the nature of the contact between the robot and the ground.

Furthermore, the friction coefficient between the robot and the ground changes

according to the location. For instance, the friction coefficient was not the same

in the laboratory and in the corridors.

In these two cases, visual odometry can be more powerful than the internal

odometry of the robot based on wheel encoders. Indeed, visual odometry uses

global landmarks. So the accuracy of the measures is the same everywhere and

the error is often centered around zero. This was the case for the aforementioned

experiments, as we can see on figure 4.7.

As we can see, the error function can be modeled by a gaussian centered

around zero. Besides, we know that a sum of gaussian distributions, sharing the

same mean and standard deviation, is stable by addition. In particular if the mean

of those distribution is zero, then the mean of the sum of those very n distributions

remains zero and the standard deviation is
√

n times the standard deviation of

any one of the gaussian distributions contributing in the sum. For instance, if we

take 80 distances that come all from a gaussian distribution N (0, 15) the sum of

all those distances comes from a gaussian distribution N
(

0, 15
√

80
)

.

The estimation of a longer distance was computed using path integration.

Consecutive distance estimations were done and added. The resulting estimation

of the total travelled distance is shown on figure 4.8. The total travelled distance

during the experiments was approximately 10 m. Figure 4.9 shows that the corre-

sponding relative error is less than the previous relative errors. The result is even

better than expected. We have a mean of 3.9% of relative error with a standard

deviation of 3.3%. So the distance measured by the multi-layer Perceptron is

better than the distance given by the odometry in more than 90% of cases. This

confirms that visual odometry is better than internal odometry based on wheels

for long distances.
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Figure 4.1: Processus used to extract a distance from two images. The concate-
nation of vertical and horizontal histograms is computed for each image. The
difference of the two resulting vectors is the input of a multi-layer Perceptron.
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Figure 4.2: Egomotion learning curve. The graph shows the error of prediction
of a multi-layer Perceptron the weights of which correspond to each points found
by the minimization algorithm. Errors made on the learning set and a test set
are plotted for each steps.

Figure 4.3: Correlation using an uniform distribution. The graph shows the
correlation between the real distances given by the odometry system and the
computed distances given by the multi-layer Perceptron.
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Figure 4.4: Differences between the real and the computed distances. For each
sample, the graph shows the real distance given by the odometry system and the
estimated distance given by the multi-layer Perceptron.

Figure 4.5: Relative errors between the real and the computed distances. Note
that the big values of the relative errors correspond to the small travelled distances
in figure 4.4.
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(a) Correlation

(b) Real and Estimated distances

(c) Relative errors

Figure 4.6: Results using a normal distribution. Big values of the relative error
still correspond to the small values of the real corresponding distance. The results
are not better than above.
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Figure 4.7: Distribution of the error during the tests. The error done by the
multi-layer Perceptron seems to follow a gaussian distribution centered around
zero.

Figure 4.8: Estimation of a long distance. The graph shows the real distances
travelled measured by the odometry and the distances estimated by the multi-
layer Perceptron.

Figure 4.9: Relative error during a long distance. The relative error is less than
0.1 in more than 90% of cases.
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Summary and conclusions

5.1 Summary

In order to achieve our goals, various tools were used. These tools can be divided

into different categories.

Programs in a mobile robot is often a constant exchange between the robot

and its environment. The robot needs to feel its environment by using sensors

and it needs to modify its environment by moving, by speaking or by executing

other tasks. The first category of tools used is the library that controls the robot.

This library allowed us to communicate with the environment by controlling the

motors and the speaker, for instance.

We also want our robot to learn how to follow a corridor or how to estimate

a distance by judging the changes in a sequence of images. In order to perform

the learning task, we used neural networks. Two kinds of neural networks were

used. A simple Pattern Associator was used to learn linearly separable problems

like a corridor following. In order to learn more complicated tasks, like distance

estimation, we used a multi-layer Perceptron to perform the learning because it

has a more general mapping property.

We also used vision tools to process images which come from the CCD camera.

We used a Difference of Gaussian edge detector to compute an edge-detected

image. This image can then be processed by other tools to extract features from

it. We could then use histograms to detect vertical and horizontal lines. This

gives us features for the corridor following task when the camera looks in a fixed

direction. When the camera moves with the robot, we have to preprocess the

images with a Hough transform and we can then use histograms in order to bring

64
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good features to the neural networks.

These tools were combined in order to perform two tasks. A corridor follower

has been successfully built by learning features of images extracted by the his-

togram of an edge-detected image. We also built a robot that is able to estimate

its own motion using its vision system. The program learned how to map the

values that were returned by the odometry system with the visual sequences of

pictures taken by the robot.

5.2 Conclusions

We have reached our goal which was to build a robot that can follow a corridor

and estimate the travelled distance. The corridor follower done is very robust

because the neural network used was able to use different features to do the same

task. This is a general possible behaviour when we use a learning algorithm.

If we build an algorithm based on landmarks, the learning algorithm can be

more robust because it uses all the meaning extracted from the features and in

particular it can use more landmarks that the programmer did. This behaviour

adds backup to the original algorithm.

In the other hand, the estimation of the odometry using visual input that was

built shows that it is possible to estimate travelled distances. Indeed, the results

can seem poor because we used the internal odometry of the robot to teach it how

to perceive distances. This internal odometry already makes near ten percents

of relative error. We should have better results with a more accurate measure of

the travelled distances during the learning.

A strong advantage of using visual input to estimate distances is that the ab-

solute error increases slowly with the travelled distance compared to the absolute

error of the odometry. Therefore, after a while the absolute error given by our

estimation is less than the absolute error given by the odometry system. So we

can use the odometry system to estimate the travelled distance at the beginning

of a test and after a while we swap to the visual estimation of the distance. This

gives us a better measure of the travelled distance.
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5.3 Future work

In practice, a lot of parameters can reduce the accuracy of the results such as:

the numbers of pixels in the images, the size of the stripes used for the histogram,

the architecture and the size of the neural network, the orientation of the camera

and also the accuracy of the odometry. The study of the exact effect of all

those parameters can be an useful future work. Especially the change in the

environment could be useful to study. These studies could lead to a more general

distance estimator that could perform its task everywhere.

The use of a more accurate measure of the distance during the learning stage

could also be investigate. We can use other devices or simply use techniques such

as the one described in [9] or such as the one described in [6] designed to improve

the accuracy of the internal odometry.

In order to build a robot that can follow corridors using a map provided by the

user, the robot must not only follow corridors and estimate distances, but it must

also be able to estimate its steering angle. A possible future work is to estimate

angles when the robot turns. A first step could be to estimate angles when the

robot turns without moving. The further step needed to achieve a robot that is

able to navigate is to combine the angle estimation and the distance estimation.

This will allow a user to build paths for the robot such as: move 10 m forward,

then turn 90◦ on the left and move 2 m forward.

As we can see, visual odometry is an open field and there are a lot of work to

do to improve the existing results and to provide an usable system.
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