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Abstract

Statistical appearance models are used to model objects from images using their

shape and texture. Such models have been applied successfully in a large num-

ber of applications. Nevertheless, the appearance model does not model video

sequences of animated deformable objects.

The aim of this thesis is to add a temporal dimension to the appearance

model in order to properly represent movement in video sequences. We apply

this extended model to the study of facial behaviour.

The method uses a statistical framework learnt from a training video sequence.

The series of parameters extracted from the sequence is modelled by a set of path-

lets in parameter space. A higher level model learns how to organise the pathlets

into meaningful sequences representing facial expressions or typical movements

of the head.

A measure of quality of generated video sequences is derived. This measure

shows that our model outperforms an alternative based on autoregressive pro-

cesses. A forced choice psychophysical experiment confirms this conclusion.
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Chapter 1

Introduction

1.1 Motivation

Humans are social animals, and communication underpins our society. The most

natural way of interacting with anyone is face-to-face. It has thus long been a goal

of research into human computer interaction to be able to mimic this face-to-face

communication.

Raudsepp [78] has pointed out that in a dialog, 7% of the message conveyed

is verbal, 38% is vocal and 55% lies in the body language. The verbal part of

a conversation is the content of the conversation itself. The vocal part is the

paralanguage, that is the tone of voice, intonation, pauses and sights. The body

language consists of posture, distance maintained with the speaker, eye contact,

gestures and facial expression. The importance of eye contact in a conversation

suggests that a natural human-computer interface should display a picture of a

face on the screen.

Gestures have been extensively studied by the machine vision community in

order to enable computers to understand humans using their natural way of ex-

pressing themselves. Results of these studies can provide an elegant alternative to

input devices used with computers, especially for interaction in 3D environments.

More recently, facial expressions have been studied. Classification or assess-

ment of facial expressions from a video sequence can be used by computers to

understand how the user feels and to react in an adapted manner to his emotional

state. Indeed, even if it is often difficult for a human to detect an expression on

the face of a person, the face reflects most of our emotions. Many of the studies

in facial expression classification concentrate on extracting the six basic emotions

21
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from images or sequences of images: happiness, sadness, surprise, fear, anger and

disgust. A trained human is able to distinguish these emotions using facial clues

with an error average of 13% [75].

Building a human-computer interface based on visual clues requires several

stages:

1) a tracking system that is able to locate the face of the user each time it is

required. The tracking problem is challenging because of the variability of

the expressions one can show. In order to be able to bring useful information

to the next stages, it has to be both accurate and robust. Facial hair, glasses,

occlusions and sensor noise are problems that make this task difficult.

2) the analysis of the user’s face to extract information such as facial expression

or the user’s gaze direction. We can then combine this information to deduce

the state of the user.

3) a decision of how to react to the user.

4) the synthesis of a virtual face which seems to react in a manner which

appears natural.

Unfortunately, such an ideal human-computer interface is still in its infancy.

In order to achieve such a complex task, a good model of facial behaviour is

needed. This thesis describes one approach to creating such a model.

Such a model could be used to animate a crowd in games, for instance. Each

face can be synthesised using a model of facial behaviour. Typical motions could

be acheived this way by learning the model on typical videos from the target

game. For instance, learning the model from a spectator of a tennis game, would

produce shaking head avatars.

Althought we apply our model to facial behaviour, it can model the behaviour

of any deformable object, such as fire for instance. Synthesised videos of fire could

be used in games, movies or 3D environments.

Finally, synthesis is not the only purpose of a behaviour model. We would

also like a model we can interpret. Interpretation could be useful for a variety of

tasks such as diagnosis (if we model the appearance of a heart valve or another

organ), or theft detection (if we model the appearance of people in car parks for

instance).
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1.2 Aims and objectives

The aim of this work is to create a generic model that is able to synthesise both

the appearance and behaviour of deformable objects such as human faces. The

model will be an extension of the appearance model designed by Lanitis, Cootes

and Taylor [57]. The appearance model is a probabilistic model used to describe

an object in a still image by learning its shape and appearance from a database of

hand labelled images of similar objects. It is described in more detail in chapter

3 of this report.

In the long term, we would like to apply the model to the study of interaction

between people during conversations in order to synthesise one person as a re-

sponse to the behaviour of a real person (see figure 1.1). For instance, we would

expect a virtual person to close his mouth when the real person is speaking or

the virtual person may smile when the real person is smiling.

Camera

User

Avatar

Figure 1.1: Goal: interaction with an avatar. In an ideal system, a camera films
the user and an avatar is displayed reacting to the user’s expressions. Our system
does not model the interaction.

For the purpose of this thesis, we bound ourselves to the generation of facial

behaviour of one person. The facial behaviour is learnt from a video sequence of
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the person. The resulting model can be used to generate new video sequences of

the same person exhibiting a similar behaviour.

We wish to avoid using frames from the original video sequence when gener-

ating behaviours, since people are good at noticing loops and frames reappearing

several times. We also want the model to be explicit. We want to be able to

understand the behaviour of a face in the video sequence by looking at represen-

tations of the different components of the model.

1.3 Overview of the framework

Figure 1.2 shows an overview of the model of facial behaviour we have developed.

First, the face has to be tracked in the video sequence (1). The appearance model

parameters have then to be deduced from the tracked face (1→ 2). The trajectory

formed by those appearance parameter vectors is then broken into pathlets (2→
3) which are grouped and modelled. The trajectory is now a sequence of pathlet

models (3). The sequence of pathlet models is learnt (3→ 4) by a variable length

Markov model (4).

Figure 1.2: Overview of the components of the model. P is the appearance
parameter space. Arrows from left to right represent the learning phase and
arrows from right to left represent the generation phase. Each face from the
frames of the original video sequence corresponds to a point in the space P. The
trajectory of the points in P is modelled by a sequence of pathlet models. The
temporal relationship of the pathlet models is learnt by a variable length Markov
model.

In order to generate new trajectories, a new sequence of pathlet models has
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to be sampled from the variable length Markov model (4 → 3). A new pathlet

has to be sampled from each pathlet model in the sequence (3 → 2) to give a

sequence of pathlets, that is a trajectory (2). Each point in that new trajectory

in the appearance parameter space can then be synthesised (2 → 5) to give a

video sequence of faces (5).

1.4 Thesis organisation

The remainder of the thesis is organised as follows:

• chapter 2 reviews the related work on behaviour modelling.

• chapter 3 describes the active appearance model and the tracking module.

• chapter 4 describes the data acquired to assess the model.

• chapter 5 describes how to transform a trajectory into a sequence of pathlet

models and provides a visual comparison of the two methods used to find

those sequences.

• chapter 6 describes the variable length Markov model and gives results on

the quality of its prediction capabilities.

• chapter 7 describes how to synthesise new video sequences of behaviour

with our model.

• chapter 8 describes an alternative model and a measure of comparison

between behaviour models; it provides some quantitative results as well as

qualitative results based on a psychophysical experiment.

• chapter 9 concludes.



Chapter 2

Related work on behaviour

modelling

2.1 Introduction

The main aim in machine vision is to interpret images. By extension, it also aims

at interpreting image sequences. In this chapter, we review how people have tried

to model behaviour and interactions between different actors in a video sequence.

2.2 Learning and analysis of behaviours

Behaviour from image sequences has been studied by several research groups. We

can separate those studies into two main classes: the generative methods and the

non-generative methods. The non-generative methods are used for recognition

while the generative model can be used for both recognition and synthesis. The

generative methods can be further separated into sample based methods, meth-

ods using appearance models and other generative methods. The sample based

methods use frames from the original sequence to synthesise new sequences (the

sequences can be video sequences or 3D skeleton sequences or any kind of se-

quences described in the following sections). A graphical tree representation of

this classification is shown on figure 2.1. Our model can be classified as being in

the appearance model based methods as denoted by the bold lines on the figure

2.1.

The following sections describe the work related to ours for each class of

method used.

26
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Sample based methods Other generative methods

Non−generative
methodsgenerative methods

Behaviour analysis

Appearance model
based methods

Figure 2.1: Classification of the related work in behaviour modelling. The classi-
fication of our model is represented by bold lines.

2.3 Non-generative methods

A classification of the non-generative methods can be found in figure 2.2. The

methods are usually used for recognition of behaviour. However, a new sequence

that represents this behaviour cannot be generated from the models directly.

Fleet et al. [32] use optical flow to learn motion in a sequence of images.

A principle component analysis is used on data obtained from an optical flow

algorithm to find the first order components of the velocity fields. It has been

tried on the modelling of lips motion of a talking head. The first seven components

found explained 91.4% of the variance. They used this result to build a simple

user interface controlled by the head and the mouth. The mouth gives orders

such as “track”, “release” or “print” and the head is used like a joystick in order

to scroll when in tracking mode.

Black and Jepson [7] use the particle filtering methods to recognise signs

written on a white board in order to control a computer. A training set of

manually aligned signs is used to compute a model for each sign. Each model

represents the mean trajectory of signs that encode the same action. A set of

states is defined and represent the model used and the scale used to fit to the

template stored for the model. When a new sign is presented to the system,

probabilities of matching signs in the model database are computed by a chosen

probability measure. A current state is chosen using the computed probabilities.

The next state is then predicted from the current state by diffusion and sampling,
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as it is done in particle filtering algorithms. If likelihood of this state is too small,

the previous step is tried again up to a fixed number of tries. If the likelihood

is still too small, a random state is chosen. A set of new weighted states are

generated using this method by choosing different current weighted states. The

gestures are then recognised using these weights.

Bobick and Davis [10] use a combination of motion energy image and motion

history image to store templates of gestures in a database. The motion energy

image describes the distribution of motion by summing the square of thresholded

differences between successive pairs of images [9]. This gives blob-like images

describing the areas where motion has been observed. The motion history image is

an image template where the pixels represent the recency of the movement at the

corresponding position. This image represents how a gesture is performed. The

motion energy image and the motion history image form a vector that describes

a gesture. The gestures are then discriminated using Hu moments on the motion

energy image. These moments and other geometric features form the parameters

of the motion energy image [9]. This is specific to their application and can be

done using other methods for different applications. The recognition is performed

by comparing a gesture with the stored parameters using Mahalanobis distance. If

this distance is less than a threshold, the similarity between motion history images

is used to make the decision. If several gestures are selected, the one closest to

the motion history image stored in the database is chosen. This approach has

been extended in [26] by using a hierarchical motion history image instead of a

fixed size one in order to improve recognition properties.

Hong, Turk and Huang [42] recognise gestures of a user interacting with a

computer by using finite state machines in order to model those gestures. The

user’s head and hands are first tracked by the algorithm proposed by Yang et

al. [99]. The spacial data are represented by states that are computed using

dynamic k-means. The Mahalanobis distance is used for the clustering. During

the clustering, each time the improvement is small, the state with the largest

variance is split into two states if the variance is larger than a previously chosen

threshold. Therefore, the number of clusters increases until each cluster has a

variance smaller than the threshold. The sequences of clusters during training

gestures are then entered manually. The range of time we can stay in a state is

then associated with each state. For instance figure 2.3 represents a sequence like

{0,1,1,1,1,2,2,2,2,2,2,2,2,1,1,0} and the user can stay between 2 and 3 cycles in
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the state 1 during the recognition phase. The recognition of the gesture is done

by simply following the links in the finite state machine. If the hand is close to

the centroid of a state during a particular number of cycles, then the algorithm

moves to the next state. If two gestures are recognised at the same time, the

gesture which was closest to the centroids of the clusters is chosen.

0 1 2 01

Figure 2.3: Representation of a gesture by a sequence of states in [42]. Each
state represents a cluster amongst a set of cluster obtained from a trajectory of
a gesture. The sequence is entered manually and the time spent in each state is
associated with the state. The arrows represent the possible transitions of states
between two cycles of the recognition phase.

In [95], Walter et al. model gestures by groups of trajectory segments. The

trajectory segments are extracted by detecting discontinuities in the gesture tra-

jectory. After normalising the trajectory segments, their dimensions are reduced

using a principle component analysis. Clusters are then extracted from the com-

ponent space using an iterative algorithm based on minimum description length.

The clusters form atomic gesture components. There is a parallel between groups

of trajectory segments and the actions or visual units we want to extract from

the video sequence. However our segmentation and grouping algorithms are both

different.

In [71], Ng and Gong use another algorithm to group trajectory segments.

They use the Levenshtein distance to compare two trajectory segments. This

distance is based on the dynamic time warping algorithm and a reinterpolation

of the trajectory segments. An affinity matrix is constructed by comparing the

segments two by two. Their unsupervised version of the normalised cut algorithm

is then used on this affinity matrix to cluster the trajectory segments. An optimal

threshold of the normalised cut algorithm is found maximising the intra-cluster

affinity while minimising the inter-cluster affinity.
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2.4 Generative methods

2.4.1 Sample based methods

Sample based methods reuse frames from an original video sequence to generated

new sequences. A tree representation of the literature on this class of generative

methods can be found on figure 2.4.

Schödl et al. [86] introduce the concept of video textures. Their aim is to

generate an infinitely long video sequence based on frames from an existing video

sequence. Loops in the video sequence are created by jumping from one frame to

another in the original video sequence. The chosen frames are selected to exhibit

similar appearance and dynamics while avoiding dead ends in the generated video

sequence.

Graf and Cosatto [37] use a database approach to create a talking head. Us-

ing a pre-recorded video sequence, features such as the position of the head or

the size of the mouth are computed. For each frame, those features are recorded

in a database along with the corresponding phoneme and the appearance of the

mouth. The latter is modelled by a local linear embedding [83], which is a com-

pression technique and provides a reconstruction of the image of the mouth close

to the original image. Their aim is to create new video sequences constrained

by a sequence of phonemes describing the text to be pronounced by the talk-

ing head. The new sequence takes images from an existing video sequence and

overlays images of the mouth found in the database. A Viterbi search is used

to find the closest appearance that satisfies the constraints and produces smooth

articulation.

Kovar et al. [55] creates realistic motions of 3D skeletons from motion cap-

ture data. The original motion capture data is segmented and the segments are

stored in a database. A measure of similarity is computed between each pair of

frames. Local minima of this similarity measure that have a value less than a

selected threshold are computed. The corresponding pairs of frames are selected

to construct a motion graph that represents how we can move from one capture

sequence stored in the database to another. Transition sequences between stored

captured sequences are also synthesised by a linear blending technique, stored in

the database and added to the motion graph. The motion graph is then pruned to

avoid dead ends and to ensure that arbitrary long streams can be generated while

using most of the sequences stored in the database. Sequences of 3D skeletons
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can then be generated by moving along the motion graph. The motion graph can

also be used to find the best motion between two frames given by the user. This

is done by standard graph theory algorithms that minimise a metric between

two nodes on the motion graph. Metrics such as the length of the generated

sequence are used. This method can be used by animators to generate realistic

body motions by only specifying how the body should look for a few frames in

the sequence.

Arikan et al. [2] use a hierarchical motion graph to model trajectories of 3D

skeletons. As in [55], a database of capture motion data is used. The hierarchy

of motion graphs is constructed so that each level represents a broader view of

the motion graph of the next level. Therefore, higher levels of the hierarchy of

motion graphs contain fewer nodes, each node being a representation of a group

of nodes in the next level. User constraints for generating new sequences (such as

contact constraints between the feet and the floor) can be applied by restricting

a search to valid path examples and mutating paths in a way that preserves

the constraints. The search uses high level graphs to find crude solutions while

refining the solution using low level graphs.

2.4.2 Appearance model based methods

Figure 2.5 summarises some of the techniques using appearance models. Such

models represent the shape and texture of an object (see section 3.4), and have

been found to be very effective for synthesising faces and facial behaviour.

Magee and Boyle [62] built a behaviour classifier called “history space classi-

fier”. The history space is constructed by a succession of a spacial and a temporal

operator. The spacial operator selects the nearest prototype using a winner take

all approach. The temporal operator used is simply a multiplication by a weight

which is the reciprocal of the time spent since the prototype has last been se-

lected [60]. A more complex temporal operator could be used such as a set of

leaky neurons as has been done by Sumpter and Bulpitt [92]. A modified version

of the expectation maximisation introduced by Cootes and Taylor [23] is then

used to model the point distribution function. In order to decrease the computa-

tional load of the algorithm, a principle component analysis is applied before the

expectation maximisation algorithm so that the size of the data set is reduced.

The resulting point distribution function is then used to predict the next state in

the sequence.
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Magee and Boyle [61] are using cyclic hidden Markov models in order in

conjunction with Black and Jepson’s variant of the particle filtering algorithm.

Their aim is to recognise cows having difficulty walking. Figure 2.8(d) shows

how hidden nodes are connected in a cyclic hidden Markov model. Those models

are good at describing the cyclic motion that can be observed from a cow’s leg.

Two cyclic hidden Markov models are used to model the motion of cows walking.

One learns a typical behaviour of a healthy cow and the other one learns a lame

behaviour. The cyclic hidden Markov models are integrated in the re-sampling

particle filtering framework so that the model that described a test behaviour

more accurately dominates over time. The decision is then based on the number

of samples produced for each model. In [61], Magee et al. also use a multi-stream

cyclic hidden Markov model to model the two motions with only one stream of

hidden states.

In [51], shapes are approximated by splines. The parameters controlling the

splines as well as their speed are first clustered into prototype vectors using a

competitive learning neural network. A compressed sequence derived from the

prototype vector sequence is learnt using a Markov chain. A cubic Hermite in-

terpolation is used along with the learnt Markov chain to recover the temporal

structure of the sequence before compression and to extrapolate a behaviour. Fur-

thermore, for generation purposes, a single hypothesis propagation and a max-

imum likelihood framework are described. During the generation, states of the

Markov chain are chosen according to the state of the shape of a tracked person.

This can allow generation of a shape of a virtual partner driven by a tracked real

person. In [28], Devin and Hogg added sound and appearance to the framework

in order to demonstrate that producing a talking head is possible.

Galata, Johnson and Hogg [33] also split trajectories into prototypes in or-

der to model movement. The structure of the movements is then learnt using a

variable length Markov model. As this approach seems to be one of the state of

the art in behaviour modelling, we studied its components, in particular the vari-

able length Markov model (see chapter 6). A prototype clustering is performed

using a k-means like algorithm. The sequence of prototypes is then learnt using

the variable length Markov model. The advantage of this approach is that it

can model joint behaviour of people [52]. This is an essential characteristic for

building a realistic human-computer interface. In [34], sequences of prototypes

delimited by key-frames prototypes form atomic behaviours. The variable length
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Markov model can learn those atomic behaviours instead of directly learning the

prototypes, thus producing a higher level model.

Hack et al. [40] model trajectories by a sequence of pathlets. The dimensions

of the pathlets observed in a training sequence are reduced using a principle

component analysis. Using a Gaussian hidden Markov model, pairs of consecutive

pathlets are clustered. New sequences of pathlets can then be created by sampling

pairs of pathlets from the model, constrained by the choice of the first pathlet

being the second pathlet of the previous sampled pathlet pair. This assures

continuity in the sampling of pathlets through the generated sequence.

Campbell et al. [17] introduce another way of generating video sequences of

faces based on an existing video clip without direct reuse of the original frames.

They encode frames from the original sequence using an appearance model and

a trajectory is obtained in the parameter space. This trajectory is then learnt

using a second order autoregressive process. An autoregressive process predicts

the position of a point yk in the appearance parameter space, given the two

previous points yk−1 and yk−2 where k represents the frame number, using the

equation:

yk − y = A2 (yk−2 − y) + A1 (yk−1 − y) + B0wk (2.1)

where y is the limit of the mean value of yk as k tends to infinity, wk contains

white noise (wk ∼ N (0, 1)), A2, A1 and B0 are parameter matrices. y, A2, A1

and B0 are learnt from the original data set. The learning method used in this

work is due to Reynard et al. and is described in [79]. Given two initial points

in the parameter space, a new trajectory can be generated by applying equation

2.1 repetitively. This new trajectory can be used to synthesise a video sequence

of a face. They use this model in [74] and [38] to create an expression space that

can be easily displayed and to help animators to generate new video sequences of

expressions from an intuitive interface.

2.4.3 Talking heads

An extensive number of articles try to solve the problem of generating realistic

talking heads. A talking head uses external inputs to produce the video sequence

of a face. Such external inputs can be a phoneme sequence or an audio track that

corresponds to the text that have to be pronounced by the head [73, 67, 35, 44,

72, 31, 3, 43, 16]. Here we concentrate only on the methods using appearance
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models.

Theobald et al. [93] use an appearance model to synthesise videos of a talking

head based on a sequence of phonemes. The sound track is first segmented

into phonemes. A set of codebook vectors is created from some training videos

of someone speaking with a neutral expression. Each codebook vector encodes

a phoneme and the corresponding appearance parameters. In order to create

the talking head, a sequence of phonemes is given as an input to the system.

This sequence can either be given manually or generated from a given audio

track. A measure of similarity of phonemes and their context is used to find the

closest codebook vectors to the current phoneme. The appearance parameters

are then extracted from the first few codebook vectors and a weighted average

used for synthesis. The resulting appearance parameters from each phoneme

are concatenated together. The result is then smoothed by interpolating the

sequence of appearance parameters using a smoothing spline. The parameters

are synthesised back to a video sequence to produce a photorealistic head talking

with a neutral expression.

Cosker et al. [25] present a talking head based on hierarchical non-linear

speech-appearance models. Instead of using a standard appearance model, a hi-

erarchical facial model is used. Several parts of the faces are modelled separately

using an appearance model for each. For instance, the mouth has its own model

and should capture all the possible mouth variations, even the fine details that

are harder to capture with a appearance model of the whole face. This approach

is similar to [94]. The appearance vectors corresponding to the parts are con-

catenated. The distribution of the vectors is then approximated by a mixture

of Gaussians using the EM algorithm [27]. The 40ms voice data corresponding

to each frame is encoded in the same way as [28] using a Mel-Cepstral analysis.

It is concatenated to the appearance vector in the corresponding cluster. Each

cluster is then modelled by a principle component analysis. For the synthesis, a

sound sample of 40ms is presented to the system. The cluster that is closest to

that sound is used for synthesis. The Mahalanobis distance is used to compute

distances between the sound sample and the parameters of sound correspond-

ing to the mean of each cluster. A linear relationship is then assumed within

the cluster to map the speech parameters to the appearance parameters. After

smoothing the trajectory of the appearance parameters, the face is finally syn-

thesised by combining the reconstruction of the different appearance models used
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Figure 2.6: Appearance model based methods for talking heads.
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(face, mouth and eyes).

The two works can be classified as appearance model based methods in figure

2.6.

2.4.4 Other generative methods

Other methods that use neither appearance model nor samples from original video

sequences are described in this section. A tree representation of this part of the

literature can be found in figure 2.7.

Saisan et al. [84] use autoregressive models to recognise dynamic textures

such as waterfalls, smoke, waves or fire. After subsampling and reduction of the

frames of the video sequences, a principle component analysis or an independent

component analysis is applied to the set of frames to reduce their dimensionality.

The dynamics of the process are then learnt from the reduced data in such a

way that it produces a canonical representation of the data. Several distances

between canonical representations of autoregressive models are tested with both

the independent component analysis and the principle component analysis rep-

resentation. Best results were obtained with the principle component analysis

using Martin’s distance [66]: a recognition rate of 89.5% has been achieved on a

database of 200 dynamic textures.

Jebara and Pentland [48] propose an Action-Reaction Learning (ARL) in or-

der to synthesise human behaviour. After using colour classification [47], blobs

corresponding to the positions and orientations of the head and hands of a user

are extracted using an expectation maximisation algorithm. A Kalman filter is

used to improve the tracking of the blobs. A time series approach is used to map

past to future. A window is chosen to represent the 128 previous frames (about

6.5 seconds of video). This gives a series of vectors of dimension 3840, that is

15 parameters for the blobs by 2 individuals by 128 frames. The dimensionality

of these vectors are then reduced using a principle component analysis to form

a 40 parameter vector. The most recent vector and the most recent velocity are

then concatenated to this vector to form the input vector of the system. This

input vector encodes the past action of each frame. The corresponding output

vector is given by the 30 dimensional vector representing the current frame. The

conditional expectation maximisation algorithm [49] is then used to find the prob-

ability of the location and direction of the blobs given the compressed past vector.

After having observed the interaction between two users, the system is the able



C
H

A
P

T
E

R
2.

R
E

L
A

T
E

D
W

O
R

K
O

N
B

E
H

A
V

IO
U

R
M

O
D

E
L

L
IN

G
40

Hidden
Markov
models

Markov models

Other generative methods

Textons

Transition

(Dijstra’s algortihm)
matrix

Continional

(CEM)

expectation
maximisation

Autoregressive
model

Coupled
HMM

Entropy
minimisation

Mixture of
gaussians

Linear
dynamical
model

kernel−based
HMM

Music features:
energy pitch
and beat Set of 3D points

locally reduced
by a PCA

Key 
frames

Markov
chain

Eigen−images Reduced feature
vector

Blobs of
color and
location

their mutal
relationships

Blobs and

T
em

poral/recognition m
odel

M
id−

level m
odel

A
uthorLiJebaraSaisan Brand Brand Bregler Wang Bowden

F
igu

re
2.7:

O
th

er
gen

erative
m

eth
o
d
s

in
b

eh
av

iou
r

m
o
d
ellin

g.



CHAPTER 2. RELATED WORK ON BEHAVIOUR MODELLING 41

to display blobs that interact in a meaningful sense with a single user.

Bowden [11] models a sequence of captured 3D body movements and learns

the associated motions. The set of 3D points is first modelled by a principle

component analysis and then clustered in the component space. Each cluster is

then modelled separately by a principle component analysis, in contrast with the

global principle component analysis usually used in point distribution models.

Each principle component models a part of the trajectory of the 3D points. The

motion of the points is then modelled by a Markov chain that gives the probability

of moving from one centre of the clusters to another one. New motions can be

synthesised by generating a sequence of cluster centres to be used as key frames.

A smooth trajectory of 3D points is obtained by interpolating between the key

frames.

Li et al. [58] use textons to model behaviour of 3D skeletons. The dimension

of the 3D capture data is first reduced by a singular value decomposition. They

automatically segment a stream of 3D capture data to find what they call a

texton. It represents an action or a part of an action performed by the actor in

the 3D capture data sequence. A texton is modelled by an autoregressive model

of hidden state variables that are projected back onto the space of 3D skeletons

(this is similar to [84]). A maximum likelihood framework is used to segment

the stream. Considering the transition points and the labels of the segments as

hidden variables, an expectation maximisation algorithm [27] is used to solve the

maximum likelihood problem. Once each texton is modelled, a transition matrix

is created by counting the frequencies of the textons. Generating textons is only

valid locally and the generation quickly deviates from a realistic behaviour. In

order to overcome the problem, Li et al. constrains the generation of textons

by specifying the starting and ending two frames during the generation. This is

done by solving a system of linear equations, but only copes with given realistic

poses. Otherwise the generated texton becomes unrealistic (this is similar to the

over-constrained problem that we describe in section 7.4.2). A new sequence can

then be generated by sampling new textons accordingly to the transition matrix

and constraining any new texton to begin with the last generated frame. Finally,

new sequences can also be generated by providing the starting and ending two

frames. The optimal sequence of textons used is computed from the transition

matrix using Dijkstra’s algorithm [24].

Bregler [15] uses a hierarchical framework to recognise human dynamics in
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video sequences of people running. The framework can be decomposed into four

steps: the raw sequence, a model of movements by mixture of Gaussians, a model

of linear dynamics and a model of complex movements. The basic movements

are modelled with a mixture of Gaussians using the expectation maximisation

algorithm on a probabilistic estimation of the motion based on the gradient of

the raw sequence. The Gaussians are then grouped into blobs. Each blob is

tracked by a Kalman filter. The Kalman filter is chosen to model a movement

with constant velocity because we do not know the specific motion of each blob.

A cyclic hidden Markov model is then used to model the high level complexity

of motion. The hidden Markov model is trained with an iterative procedure that

requires an initial guess of the model parameters. This guess is obtained by

dynamic programming and is fine-tuned by the procedure.

Brand and Kettnaker [13, 54] introduce a new framework to learn hidden

Markov models. Instead of the conventional Baum-Welch algorithm based on

expectation maximisation, their algorithm is based on entropy minimisation. In

practice, the M-step of the expectation maximisation algorithm is modified to

minimise the entropy of the data, the entropy of the model distribution and the

cross-entropy between the expected statistic of the data and the model distri-

bution instead of maximising the likelihood. This method gives deterministic

annealing within the expectation maximisation framework and turns it into a

quasi-global optimiser. It has been tested on the learning of the activity of an

office. Contrary to the conventional way of learning hidden Markov model, this

algorithm gives a learnt model with meaningful hidden states such as: enter/exit

activity, whiteboard writing, use of the phone or use of the computer. The transi-

tion matrix obtained is sparse and thus shows that the structure of the scene has

been discovered. It is also shown that it is more successful in detecting abnormal

behaviour.

Brand et al. [14] claim that classical hidden Markov models are not good

at correctly modelling interactions. Indeed, the Markov assumptions used to

construct the models are false for most interaction data. They do not encode time

properly. They investigate a new model called coupled hidden Markov model

(see figure 2.8(c)) where a state does not depend only on the previous state

but on several previous states that are intuitively modelling the state of each

actor of the interaction. They use the entropy minimisation algorithm previously

described to train these coupled hidden Markov models [12]. They compare the
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classical hidden Markov model (see figure 2.8(a)), a linked hidden Markov models

introduced by Saul and Jordan [85], which models balance between actors of an

interaction (see figure 2.8(b)), and the coupled hidden Markov models (see figure

2.8(c)). The data set used is a set of Thai Chi gestures. It is shown that coupled

hidden Markov models outperform the two other models. Linked hidden Markov

models were generally better than classical hidden Markov models except for

particular moves where the dynamics of the gesture cannot be capture correctly.

Wang et al. [98] synthesise dynamic sequences of a virtual conductor using a

music track as an input to the system. The joint input and output distribution

sequence is modelled by a kernel-based hidden Markov model (KHMM). The

joint probability of the input and output given the hidden state is estimated by

a mixture of Gaussians. The parameters of this mixture are computed using the

EM algorithm [27]. Features such as energy, pitch and beat are used as an input,

and positions and velocities of 15 markers on the conductor body are used as

an output. The training data set is acquired from a real conductor performing

conducting gestures on several types of music. Once the model has been trained,

the probability of the output given the input can be computed using a maximum

likelihood framework. The resulting output sequence exhibit the global dynamics

of the music while preserving the fine details of the conducting gestures.

2.5 Discussion

Figure 2.5 shows how our method [6, 5] compares to the literature. By focusing

on the last three branches corresponding to the variable length Markov model

branch, a progression can be seen. Galata et al. first used a variable length

Markov model directly on the clustered prototypes of their system. However,

in order to model longer-term behaviours, they had to introduce an atomic be-

haviour level to their model (which consists of a sequence of a few prototypes).

Our approach is to model atomic behaviours without the drawback of using pro-

totypes. Indeed, a prototype raises problems when we want to synthesise new

behaviours. Each time we generate a prototype vector, the synthesis corresponds

exactly to the prototype. So the same frame is generated many times in the out-

put video sequence. This also highlights the need of a large number of prototypes

to model a trajectory in the appearance parameter space.

Our alternative is inspired by the work of Walter et al. . They represent
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(a) Classical HMM hidden state architec-
ture

(b) Linked HMM hidden state architec-
ture

(c) Coupled HMM hidden state architec-
ture

(d) Cyclic HMM hidden state architec-
ture

Figure 2.8: Graphical representation of HMM, HMM, coupled HMM and cyclic
HMM. Figure 2.8(a) describes the representation of hidden Markov models. The
states are linked with the conditional probabilities of going to a state given we
were in a previous state. A state represents both actors of an interaction. The
hidden Markov chain is presented unrolled in time. Figure 2.8(b) represents the
linked hidden Markov chains where states are also linked with the joint probability
of both actors being in the linked states. Figure 2.8(c) represents the coupled
hidden Markov model were the states depends on the previous states of both
actors in the interaction. Finally, figure 2.8(d) models cyclic motions. The hidden
states are temporally linked, each one of them representing a part of a cyclic
motion.
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trajectories of hands by atomic trajectories and model those using a principle

component analysis. Our pathlet group model is the transposition of this model

to the appearance parameter space without, however, using the same algorithms

to build the model.



Chapter 3

Statistical appearance models

3.1 Introduction

Here we give a brief introduction to statistical appearance models. It describes

how one can build a model of the appearance of an object given a set of manually

labelled images of this object. Our eventual aim is to extend such a model to be

able to model objects in video sequences.

The second part of the chapter describes how an active appearance model is

used to track the face through a long video sequence, in the face tracking module.

This is a description of the first module shown in the overview of the system (see

figure 3.1).

Figure 3.1: Overview of the components of the model. This chapter explains how
the face tracking module works.

46
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Figure 3.2: Example of hand labelled face. The points are manually put on
features such as corners of the eyes and mouth, and along boundaries.

3.2 Statistical shape models

Statistical shape models represent the structure of an object using a set of land-

mark points. They are trained using manually annotated images. The manual

labelling is a way of including human knowledge into a learning mechanism. Fig-

ure 3.2 shows an example of hand labelled image. The shape is described by a

vector x that contains the coordinates of each point of the shape.

The first step of the statistical shape model is to align the shapes found in the

training set. This is done by an approach called Procrustes analysis [29]. This

algorithm is iterative and reduces the sum of the distances between each shape

to the mean shape. On its completion, all the shapes have the same centre of

gravity, scale and orientation.

The variation in shape is then estimated by applying a principle component

analysis (PCA) to the vectors representing the aligned shapes. The mean of these
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s vectors is computed:

x =
1

s

s∑

i=1

xi (3.1)

as well as the covariance of the data:

S =
1

s− 1

s∑

i=1

(xi − x)(xi − x)T (3.2)

and finally the eigenvectors Φi of S are computed with their associated eigenvalues

λi.

In order to decrease the dimensionality of the data, the eigenvectors corre-

sponding to the t largest eigenvalues are chosen, as they explain most of the

variation of the dataset. A threshold fv is previously chosen (usually 95% or

98%). We then compute t by taking the minimum integer where the equation:

t∑

i=1

λi ≥ fv
s∑

i=1

λi (3.3)

holds.

If we define Φ = (Φ1, ...,Φt), each vector x in the training set can be approx-

imate by:

x ≈ x + Φb (3.4)

where b is defined by:

b = ΦT (x− x) (3.5)

b describes the shape x. The approximation of the shape x can be recon-

structed with only b, given that we know the model (that is, x and Φ). Con-

straining the model to small variations allows it to generate only shapes that are

similar to the training shapes. This can be done either by restricting the elements

bi of b to vary between bounds (for instance ±3
√
λi) or by constraining b to be

in a hyper-ellipsoid:
t∑

i=1

b2
i

λi
≤ Mt (3.6)

where Mt is a threshold chosen using the χ2 distribution.

Figure 3.3a shows the first mode of variation of the model built on images of

annotated faces.



CHAPTER 3. STATISTICAL APPEARANCE MODELS 49

Figure 3.3: Example of the first mode of variation of the shape of a face. The
parameter of b corresponding to the largest eigenvalue, varies from −3

√
λ1 to

3
√
λ1.

3.3 Statistical models of appearance

The aim of the statistical model of appearance is to add information about the

texture of an object to the information about the shape of the object. The

approach is the same as the statistical shape models. The model is learnt from a

set of annotated images of the object.

First, a statistical shape model is built from the training set. New shapes x

can be generated by the equation:

x = x + Φsbs (3.7)

where bs is a vector of shape parameters.

Then, given the mean shape we warp the training images into a shape-free

patch of texture. Figure 3.4 shows how a face is decompose into a shape and a

shape-free texture.

Figure 3.4: Decomposition of a face into a shape and a shape-free texture.

The set of shape-free textures is then normalised in order to reduce the effect

of lighting. The pixel values are changed by a linear function so that the shape-

free texture of a image is as close as possible to the shape-free texture of the
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normalised mean.

A principle component analysis is then applied to the shape-free texture in

order to model this patch by a linear equation:

g = g + Φgbg (3.8)

where bg represents the parameters, as it was already the case with the statistical

shape model and g is a vector containing the pixel values of the shape-free texture

patch.

bs and bg can then describe an object and its texture. Nevertheless, the two

vectors can still be correlated. In order to reduce the dimensionality again, we

compute the vector:

b =


 Wsbs

bg


 (3.9)

for each training image, where Ws is a diagonal matrix of weights that allows

to compare bs and bg. A third principle component analysis is applied to these

data to obtain the model:

b = Qc (3.10)

where c describes the new set of parameters that controls the model. For every c,

an object can be synthesised. This is an important characteristic of the model. It

will allow us to synthesise behaviour once the proper parameter stream is found.

The figure 3.5 shows the first mode of variation of such a model.

Figure 3.5: Example of the first mode of variation of the face using a statistical
model of appearance. The parameter of c corresponding to the largest eigenvalue
varies from −3

√
λ1 to 3

√
λ1.
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3.4 Active appearance model

The aim of active appearance search is to find the parameters of the statistical

appearance model that best fits it to a previously unseen image. The active

appearance model search is based on the idea that the reconstruction of the

image should be close to the original image. We aim to minimise the difference

between the target image and the synthesis of the model.

This minimisation is done by iteratively improving a current estimate of the

parameters of the model. For each step, the algorithm uses the difference between

the target image and the synthesis of the model using the current estimate of the

parameters. This difference is represented in a residual vector:

r(p) = gs − gm (3.11)

where gs denotes the intensities in the image warped from the current shape given

by the model parameters p to the mean shape and gm denotes the intensities in

the synthesis of the texture of the model. The parameters p are a concatenation

of the appearance parameters c, and the scale and the position of the model in

the image. Figure 3.6 shows an example of the image used to compute |r(p)|.

|r(p)| gs gm

Figure 3.6: An example of difference image. The image on the left is the difference
image of the target image and the model reconstruction of given parameters.

We seek to minimise the square of the norm of r(p):

E(p) = r(p)T r(p) (3.12)

with respect to p.

We model the residuals by assuming a local linear relationship between the

parameters and the residuals:
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r(p + δp) = r(p) +
∂r

∂p
δp (3.13)

For each step, we select δp which minimises x 7→ E(p + x). We require
dE(p+x)

dx
= 0 for x = δp.

We have:

E(p + x) =

(
r(p) +

∂r

∂p
x

)T (
r(p) +

∂r

∂p
x

)
(3.14)

So:

E(p + x) = E(p) + 2r(p)T

(
∂r

∂p

)
x + xT

(
∂r

∂p

)T (
∂r

∂p

)
x (3.15)

This gives us the derivative of E(p + x) with respect to x:

dE(p + x)

dx
= 2r(p)T ∂r

∂p
+ 2xT

(
∂r

∂p

)T
∂r

∂p
(3.16)

By equating dE(p+x)
dx

to zero, we obtain:

xT

(
∂r

∂p

)T
∂r

∂p
= −r(p)T

(
∂r

∂p

)
(3.17)

That is:

(
∂r

∂p

)T
∂r

∂p
x = −

(
∂r

∂p

)T

r(p) (3.18)

So δp can be computed using the formula:

δp = −R(p)r(p) (3.19)

where:

R(p) =

(
∂r

∂p

T ∂r

∂p

)−1
∂r

∂p

T

(3.20)

Computing R(p) at each iteration is computationally expensive. We assume

that this matrix can be considered approximatively constant, since it is computed

in a normalised reference frame. So we compute it once from our training data.

The equation becomes:
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δp = −Rr(p) (3.21)

Given this model of image differences, we generate displacements δp around

the optimal value for training images, one parameter at a time, in order to find

the corresponding r(p + δp) by synthesis and image difference. This gives us a

set of pairs (δp, r(p + δp)). Those can be used to approximate the matrix ∂r
∂p

by averaging and combining with a normalised Gaussian kernel w to smooth the

result:

∂ri
∂pj

=
∑

k

w(δpjk)
(
ri(p + δpjk)− ri(p)

)
(3.22)

where δpjk is the kth displacement of the parameter j. The matrix R can

then be computed using equation 3.20.

Once the relationship between differences of parameters and differences of

intensities in the images is computed, we can derive a search algorithm in order

to locate the face. The search algorithm is summarised on figure 3.7.

Figures 3.8 and 3.9 show an example of the application of this algorithm.

Compute the difference δg0 = gs − gm

Evaluate the current error E0 = ‖δg0‖2.

Compute δp = −Rδg0.

Set k=1.

Let p1 = p0 − kδp.

Calculate the new error δg1.

If ‖δg1‖2 < E0:
accept the parameter p1.

if converged, stop.

otherwise go to the first step with p1 as the new estimate.

Otherwise try k at 1.5, 0.5, 0.25, etc.

From Cootes et al. [22]

Figure 3.7: Active appearance model search algorithm.
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Figure 3.8: Example of application of the active appearance model search algo-
rithm. The figures represent the synthesis of the parameters found after each
step of the algorithm.
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Figure 3.9: Example of result of the AAM search algorithm. The figure represent
the synthesis of the shape found overlaid on the original image given to the algo-
rithm. The different appearance parameters found at each steps are synthesised
on figure 3.8.
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3.5 The tracking module

Different approaches have been used in the literature to track deformable objects

through a video sequence using the active appearance model or derived models.

Such approaches include the work of:

• Edwards et al. [30], for tracking while recognising the identity of a face.

• Baumberg and Hogg [4], for tracking with a spline based active appearance

model.

• Magee and Boyle [59], for tracking using multiple point distribution models.

• Stegmann [91], for tracking in real-time using the active appearance model.

• Matthews and Baker [68], for speeding up computation in the active ap-

pearance model search algorithm by using a compositional approach.

• Matthews et al. [69], for tracking using two active appearance models: one

that evolves through time, increasing specificity while the other one keeps

generality properties and allows convergence of the search algorithm.

• Jurie et al. [53], for tracking using appearance of an object under planar

assumptions.

The active appearance model is a form of gradient descent, so converges to

the nearest local minima. When tracking a video sequence it is usually sufficient

to initialise the model with the result of the search in the previous frame. For

relatively slow motions this is close enough to convergence, leading to accurate

tracking. However, occasionally the movement between frames is sufficiently large

that the active appearance model fails to follow the face, and falls into a non-

optimal local minima.

To avoid this problem, we initialise the model at multiple starting points.

Those starting points correspond to nodes on a grid placed on the image. The

nodes are separated by 8 pixels, this distance being within the usual range of

convergence [21]. The active appearance model search algorithm is performed

for each initialisation, the result giving the smallest magnitude of the residuals is

chosen. This has been found to lead to reliable tracking.
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3.6 Conclusion

Models of appearance have been presented in this chapter. An associated algo-

rithm, the active appearance model allows to search for instances of faces in an

image.

The active appearance model search algorithm is a local optimiser, and is

able to match well if initialised sufficiently close to the true optima. In sequences

of faces, the difference between frames are usually sufficiently small that using

the match to the previous frame as initialisation for the search in the next for

satisfying tracking. However, large movements cause the search to fail. It can be

recovered by using a global search.

The appearance model is generative. We can synthesise an image of a face

given its appearance parameter vector.

The next chapter describes some of the video sequences of faces successfully

tracked with the active appearance model. The video sequences constitute the

training data our model should mimic.



Chapter 4

Description of the data

4.1 Introduction

This chapter explains how we can create an active appearance model that can

track a face in a long video sequence. This approach is semi-automatic since

we iteratively refine the appearance model by adding hand-labelled images in its

training set. We then describe the video sequences acquired to assess our model

of behaviour.

4.2 Annotation of the data

One important point when we want to use the active appearance model to track

a face is to make sure that the model is general enough. Every frame in the video

sequence has to be modelled, so the appearance model used should cope with all

the expression changes in the video sequence. In order to make sure the model is

general enough, we construct it from frames present in the video sequence that

we aim to mimic.

We mark up the first frame manually, so that the tracker knows where the

face is at the beginning of the sequence, thus avoiding an initialisation procedure.

Then we mark up frames that look like extreme expressions such as a large smile

or a surprised expression with the mouth open. These manually marked up frames

are used to construct a first appearance model of the face. This model is used to

track the face through the video sequence.

For each frame tracked, we can compute the sum of squares error of the

fitting using formula 3.12 . The value of this error gives a quality of fit. During

58
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the tracking, we monitor this value. If it rises above a given value, we assume

that the search has failed.

The tracking typically failed on frames that contain expressions not present

in the set of marked up frames used for training the appearance model. That

suggested that the model was not generic enough for the video sequence. In order

to make it more general, we marked up the first frame on which the tracker failed

and added it to the training set of the appearance model. We can then track the

sequence again with the new appearance model and repeat the procedure until

the face is tracked through the whole sequence.

Figure 4.1 shows the final error that we obtained on a video sequence of a

face talking. The large mean square errors after frame 85588 correspond to cases

where a global search is needed. In practice, only 17 global searches have been

applied for the face tracking on this video sequence, out of 88044 frames.

Figure 4.2 shows a visual comparison between an original frame and the re-

construction of this frame after the tracking. The reconstruction is still faithful

although the error is one of the biggest error seen on figure 4.1. This shows that

the sequence has been successfully tracked. The file tracked/aam_orig.m1v of

the accompanying CD-ROM shows the reconstruction along with the original

frames for a part of the original video sequence of figure 4.2.

Although a fully automated tracking system would be desirable, in this thesis

we concentrate on modelling behaviour. We are happy to accept some manual

intervention in the initial tracking of the training set.

4.3 Description of the data collected

In order to be able to test and assess our model of behaviour, we acquired different

videos of individuals performing different tasks: shaking, changing expressions or

talking to someone else.

We have selected those videos because they show increasing degree of structure

in the way the action is performed. Shaking is a very structured behaviour.

Changing expressions on the face at random is less structured. Finally, talking

and listening to someone else without any constraints is the most general case.
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Figure 4.2: Comparison between the synthesised version of the tracked parameters
(left) and the face in the original frame of the video (right). This frame is the
frame number 29480 of the video used to create the graph on figure 4.1. The
corresponding mean square error on grey level values is 0.33 pixel.

Figure 4.3: Frames extracted from the video V1.

4.3.1 Video sequence V1: shaking

The first video sequence we used to assess our behaviour model is a video of a

person gesturing “no” with their head.

This video has been shot with a Canon Powershot A80 digital camera. It

contains 317 frames. Figure 4.3 shows some frames extracted from the video

sequence. The file examples/V1/V1_orig.m1v of the accompanying CD-ROM

shows the full sequence.

135 frames of this video have been marked up by hand using 15 points as

depicted on figure 4.4. The hand labelled points as placed on the corners and

on the centre of the mouth, on the eyes, on the nostrils and at the border of the

face. The first mode of variation of the resulting appearance model can be seen

on figure 4.5. The sequence has been successfully tracked using this model. The

relative coordinates of the points as well as the pose, the scale and the position of

the face, have been reduced to 7 parameters for each frame. The first 3 of those

parameters represent the parameters controlling the expression of the face.
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Figure 4.4: Hand labelling of a frame from video V1.

Figure 4.5: First mode of variation of the appearance model extracted from video
V1.
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Figure 4.6: Projection of the first 3 appearance parameters extracted from video
V1.

In this simple case, the parameters can be displayed on a graph. Figure 4.6

shows the points corresponding to the first 3 parameters extracted for each frame

in the video V1. Figure 4.7 shows the projection of this graph onto the 2 first

parameters, the two largest modes of variation of the face.

Figure 4.8 shows the synthesised version of the appearance parameters ex-

tracted from some frames of the video sequence V1.

The file examples/V1/V1_track.m1v on the accompanying CD-ROM shows

the sequence of synthesised version of the tracked face for all frames. This video

sequence can be visually compared to the original video sequence to verify that

the face has been tracked correctly.

The file tracked/V1_graph.m1v on the accompanying CD-ROM shows the

generated version of the video sequence V1 after tracking, along with the graph

from figure 4.6 plotted in real time. For each frame, the point corresponding to

the synthesised parameter is added.

Since the graph of appearance parameters can be easily plotted for this video,

we choose this sequence to illustrate our algorithms in the following sections of

the thesis.
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P2

P1

Figure 4.7: Projection of the first 2 appearance parameters extracted from video
V1.

Figure 4.8: Frames extracted from the video V1 after tracking.
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Figure 4.9: Frames extracted from the video V2.

4.3.2 Video sequence V2: change of expressions

The second video sequence we used is of a person changing expressions over time.

The four expressions the face can switch to were:

• the neutral expression

• a smile

• a surprised expression

• a sad expression

The expressions changed several times through the video sequence. The sequence

of expressions used was random, although some happenned more than others.

This video is therefore less structured than the video V1.

The video has been shot with the same digital camera as video V1. It contains

3943 frames. Figure 4.9 shows some frames extracted from the sequence (see also

examples/V2/V2_orig.m1v on the accompanying CD-ROM).

Only 6 frames of this video have been marked up by hand using 43 points

as depicted on figure 4.10. Extreme expressions have been marked up in the

sequence and the appearance model was powerful enough to track effectively.

The first mode of variation of the appearance model build from video V2 is

shown on figure 4.11. The face has been successfully tracked through the video

sequence. The relatives coordinates of the points as well as the pose, the scale

and the position of the face have been reduced to 7 parameters for each frame.

Figure 4.12 shows the synthesised version of the appearance parameters ex-

tracted from some frames of the video sequence V2.

The file examples/V2/V2_track.m1v on the accompanying CD-ROM shows

the sequence of synthesised version of the tracked face for all frames from video

V2.
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Figure 4.10: Hand labelling of a frame from video V2.

Figure 4.11: First mode of variation of the appearance model extracted from
video V2.
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Figure 4.12: Frames extracted from the video V2 after tracking.

Figure 4.13: Frames extracted from the video V3.

4.3.3 Video sequence V3: dialog

The last video sequence we used to assess our behaviour model is of a person in

a dialogue. Since the person was speaking with someone else, the video includes

talking, listening, laughing, and so on. The video covers a range of expressions.

No scripting was used so that the conversation was spontaneous and natural.

This video was acquired with a JVC GR-DV2000 digital video camera. It

contains 88044 frames. Figure 4.13 shows some frames extracted from that video

sequence. The file examples/V3/V3_orig.m1v of the accompanying CD-ROM

shows the full sequence.

We used 20000 frames from the video sequence V3 to train our behaviour

model. Since the video was taken at 25 frames per second, those 20000 frames

correspond to 13 minutes and 20 seconds. This length of training sequence is

sufficient to train the behaviour model properly since it contains many repeated

expressions. Most videos used by other works in this area are much shorter (a

few seconds).

168 frames of video V3 have been marked up by hand using 96 points as

depicted on figure 4.14. The face was has been successfully tracked through most

of the video sequence. The active appearance model failed to model correctly

the face on a small part of the video sequence. This is because the face was not

entirely on the frame; the person on the video moved out of the visual field of

the camera.
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Figure 4.14: Hand labelling of a frame from video V3.
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Figure 4.15: First mode of variation of the appearance model extracted from
video V3.

Figure 4.16: Frames extracted from the video V3 after tracking.

The first mode of variation of the appearance model extracted from video V3

is shown on figure 4.15. The relative coordinates of those points as well as the

pose, the scale and the position of the face have been reduced to 14 parameters

for each frame.

A synthesised version of those parameters can be seen by watching the video

file examples/V3/V3_track.m1v of the accompanying CD-ROM. Frames extracted

from this file are shown on figure 4.16.

4.4 Conclusion

In this chapter, we have shown how we can use the active appearance model to

track a face in a video sequence.

We have applied that tracking to 3 different video sequences. All the video

sequences have been tracked entirely to generate sequences of appearance param-

eter vectors.

The following chapters will describe how we train models to generate tra-

jectories through parameter space similar to these sequences. This allows us to

synthesise convincing faces that mimic the behaviour of the face in the original

video sequence.



Chapter 5

Finding and modelling pathlets

5.1 Introduction

Figure 5.1: Overview of the components of the model. This chapter explains
how the trajectory in the appearance parameter space P is transformed into a
sequence of pathlet models. The trajectory is split into pathlets and the pathlets
are grouped to form pathlet models.

This chapter describes how we break trajectories into sequences of pathlets,

which are then grouped and used to train a set of statistical pathlet models. This

is step 3 of our framework (see figure 5.1). The first section of this chapter de-

scribes how we extract pathlets from the full trajectory. In the second section, we

describe how we model the groups of pathlets. In the next section, we present our

algorithm for grouping a small set of extracted pathlets, as well as an alternative

for a larger number of extracted pathlets. Finally we describe how to deduce the

70



CHAPTER 5. FINDING AND MODELLING PATHLETS 71

sequence of pathlet models given the algorithms in the previous sections.

5.2 Extracting the pathlets

5.2.1 Finding nodes in the trajectory

We extract pathlets from the trajectory in the appearance parameter space by

selecting points on that trajectory that split the trajectory into pathlets. We call

those points “nodes”. Figure 5.2 illustrates this process. Two consecutive nodes

are the beginning and the end of a pathlet.

Since each point on the trajectory represents a frame from the original video

sequence, the nodes represent particular frames.

We have tried several algorithms to select those nodes, including:

• Selecting a node every N timeframes (algorithm A1).

• Selecting a node every N points or if the current point we are considering to

be a node candidate is close to another node previously selected (algorithm

A2).

• Selecting a node if the direction of the speed changes (algorithm A3).

• Selecting a node if it is close to a maximum number of other nodes (algo-

rithm A4).

There are no good a priori reasons to choose one over the other.

Table 5.1 shows the nodes found on some trajectories. Its columns represent

different trajectories. The first and second columns represent two hand drawn

trajectories while the last column represents the trajectory given by the appear-

ance parameters from video V1. The first row shows the points the trajectories

are composed of. The remaining rows show the results of algorithms A1, A2, A3

and A4. For each algorithm and each trajectory, the trajectory points have been

drawn in grey while the selected nodes have been highlighted with bigger black

dots.

Algorithm A1 is the simplest approach: selecting pathlets of fixed length. For

instance, [40] or [74] use fixed length segments of trajectory for their behaviour

model. As you can see in Table 5.1, this strategy leads to unstructured pattern

of nodes selected from the original trajectory. Although it might be valid for



CHAPTER 5. FINDING AND MODELLING PATHLETS 72

Grouping the
pathlets

...

pathlet groups

Extracting nodes

Figure 5.2: Overview of the pathlet groups extraction process. First nodes are
extracted from the trajectory which split the trajectory into pathlets. Similar
pathlets are then grouped together.
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Table 5.1: Comparison of the different algorithms of the node extraction process.
Trajectory T2 has been drawn by hand so that it looks similar to the data used
in [96] for direct visual comparison of the node selection results. Trajectory T1
is hand drawn while trajectory T3 is generated from the video sequence V1 (see
section 4.3.1).
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some behaviour models, it leads to sets of pathlets that are unlikely to be easily

clustered.

Ideally we would like to split the trajectory into pathlets which can be effec-

tively grouped and modelled. This suggests that the nodes (the ends of the path-

lets) should form tight clusters where possible. Algorithm A1 does not achieve

this.

A simple modification is to select every N th point unless one of the next N

points is close to an existing node, in which case it gets selected. Figure 5.4

illustrates this algorithm. In detail, algorithm A2 is given in figure 5.3.

Set i = 0 (the first point).
Add point 0 to the node list.
Repeat:

Consider points i + 1 . . . i +N .
Find closest, j, to an existing node.
Consider points j + 1 . . . i+N .
Find the furthest, k, to existing nodes.
If point j is within a threshold d of existing nodes and point k is not:

Add point j.
Set i = j.

Otherwise:
Add point i +N to the node list.
Set i = i+N .

Until the end of the trajectory.

Figure 5.3: Algorithm A2

In Table 5.1 we can see that algorithm A2 gives a more structured segmenta-

tion than algorithm A1. Nodes are grouped together, but we can still see some

remaining unstructured sets of nodes. Those unstructured sets of nodes often

split the trajectory into small pathlets of one or two points long that are unlike

the other pathlets. Such pathlets are outliers and are hard to group with others,

since they are usually located further apart in the appearance parameter space.

In [95], Walter et al. propose a temporal segmentation of a gesture trajectory

in two steps:

• detection of rest positions, where the velocity drops below a threshold

• detection of discontinuities in orientation to recover strokes

Following the same approach, algorithm A3 segments the trajectory by thresh-

olding the scalar product of two consecutive unitary speed vectors. In order to
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Figure 5.4: Selection of nodes using algorithm A2. The circles and black dots
represent the points from the original trajectory. The nodes selected by the
algorithm are represented by the black dots. The algorithm selects nodes every
N points unless it passes close to a already selected node with a distance less
than d. In that case, the next selected node is the point on the trajectory that is
closest to the already selected node. This figure has been drawn with N = 3.

avoid selecting consecutive points as nodes, we only select the lowest scalar prod-

uct for each set of consecutive points with low scalar products, in a similar way

as for low distances in algorithm A2. The resulting selected nodes on trajectories

T1, T2 and T3 are shown in Table 5.1. Trajectory T2 is a hand draw reproduction

of the data shown in [95], representing hand positions during gestures. Algorithm

A3 performs well on this trajectory but is sometimes disturbed by the noise in the

data. Algorithm A3 does not perform well with the other two trajectories, due to

noise, the small sampling rate of trajectory T3 and the behaviour of trajectory

T1. Since no sudden change of velocity appears in trajectory T1, only changes of

directions due to noise are selected.

The attempts at clustering the trajectory highlight the following:

• the nodes should be chosen so that they are close to other chosen nodes to

ease the grouping of pathlets.

• the smaller the number of clusters of nodes, the smaller the number of

pathlet groups, and the easier it will be to learn their temporal relationship.

Those remarks lead us to consider algorithm A4. We select points that are

close to other trajectory points in the appearance parameter space. In order to
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find those points, algorithm A4 is based on the mean shift algorithm.

5.2.2 The mean shift algorithm

The mean shift algorithm is a nonparametric estimator of density gradient. It

has led to many applications such as tracking [18, 56], filtering and image seg-

mentation [19] or recognition of freehand sketches [100].

The goal of the algorithm is to find a local maximum of density amongst a set

of n points {xi}i=1...n in a d-dimensional Euclidian space. In our case, the space

is the appearance parameter space P .

The discrete density of the set of points {xi}i=1...n is approximated by a con-

tinuous density. A kernel K(x) is placed at each point x to get a multivariate

kernel density estimate for the whole set of points.

Given a window radius h, the density computed at a point x is given by:

f̂(x) =
1

nhd

n∑

i=1

K
(

x− xi
h

)
(5.1)

In practice, we are using the Epanechnikov kernel given by the formula:

K(x) =





1
2
v−1
d (d+ 2)

(
1− xTx

)
if xTx < 1

0 otherwise
(5.2)

where vd is the volume of the unit d-dimensional sphere [90].

Since K is differentiable, we can compute the gradient of f̂ :

∇f̂(x) =
1

nhd

n∑

i=1

∇K
(

x− xi
h

)
(5.3)

For the Epanechnikov kernel it becomes:

∇f̂(x) =
1

nhd
d+ 2

vdh2

∑

xi∈Sh(x)

(xi − x) (5.4)

where Sh(x) is a hypersphere of radius h centred on x.

We can see, from equation 5.4 that an extremum of density is reached at the

point y given by:

y =
1

nx

∑

xi∈Sh(x)

xi (5.5)
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where nx is the number of points present in the hypersphere Sh(x).

The vector Mh(x) = y − x is called the mean-shift vector. If we translate x

by Mh(x), we reach an extremum in the kernel density function f̂ .

The idea of the mean shift algorithm is to iteratively find an estimate of

the local extremum of density within the current window and then translate the

centre of the window to the found extremum.

Comaniciu and Meer have proved the convergence of this algorithm as well as

the monotonic increase in the density estimate through the iterations given some

hypotheses that are verified in the case of an Epanechnikov kernel [20].

The mean shift algorithm involves iterating the following steps:

• computation of the mean shift vector Mh(x)

• translation of the window Sh(x) by Mh(x)

until convergence.

Figure 5.5 summarises the algorithm.

Set y0 to the start position.
Iterate:

yk+1 = 1
nyk

∑
xi∈Sh(yk) xi

Until the hyperspheres Sh(yk) and Sh (yk+1) contain the same points.
Adapted from Comanicui and Meer [20]

Figure 5.5: The mean shift algorithm.

In the mean shift algorithm, the radius h of the hypersphere acts as a smooth-

ing parameter. It represents the scale at which we consider the extrema to be

local. A small value will end up in selecting only the start position as being a

maxima of density in its close neighbourhood. A large value will skip some local

maxima of small areas to focus on local maxima of larger areas. Since different

data have different scales, h has to be adapted manually for each dataset.

We can use the mean shift algorithm to find local maxima of density in the

set of points defined by the trajectory. We initialise the mean shift algorithm

at each point in turn, the result being the closest local maxima of density. This

provides us with a set of local maxima in the trajectory points distribution. In

practice, we are only using every q points as it does not significantly affect the

result to much while increasing the speed of the search by a factor of q.
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We compute the set of nodes by adding all nodes that are close to the local

maxima. We use the same procedure as algorithm A2 to find the closest node

with a distance less than d to a local maxima: we select the node amongst the

consecutive nodes that lies in the hypersphere of radius d and centred at the

closest local maxima.

The parameter d has to be adapted manually for each dataset. A too small

value of d results in too few points being selected in the neighbourhood of a

maxima of density. Often, only one point is selected in that case, as shown by

figure 5.6. If the value is too large, we take the risk of selecting too few good

nodes by choosing each nodes between too many candidates at a time. This is

shown on figure 5.7.

���
�

Candidates

Selected node

Figure 5.6: Small distance for the selection of neighbours. The maxima found
by the mean shift algorithm is located by a black square. Only one point can be
selected as a node due to the small size of the hypersphere.

5.2.3 The pathlets

Now that we have selected nodes on the original trajectory, we can find the asso-

ciated pathlets. Each pathlet is the sequence of points between two consecutive

nodes on the trajectory. Figure 5.8 illustrates how to find the pathlets.

The next step in the framework is to cluster the pathlets into meaningful

groups which can be modelled. The next section describes how we model the

pathlet groups.
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(c) Selection of the other node

Figure 5.7: Large distance for the selection of neighbours. The maxima found
by the mean shift algorithm is located by a black square. Only one point can
be selected as a node on figure 5.7(a) due to the large size of the hypersphere
covering a large part of the trajectory. A smaller distance d for the selection
would have led to two nodes selected as shown on figures 5.7(b) and 5.7(c), since
we are entering and leaving the hypersphere twice while following the trajectory.
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Figure 5.8: Selection of the pathlets given the nodes. The points of the original
trajectory are represented by circles and the nodes are represented by filled circles.
The first pathlet is the sequence of points from the original trajectory from node
1 to node 2, the second is the sequence from node 2 to node 3, and so on.

5.3 The pathlet model

5.3.1 The spatial model

We model each pathlet within a group by using a linear statistical model, as-

suming a Gaussian distribution. Each pathlet is described by a vector, which is

a simple concatenation of the pathlet points. A pathlet group is a set of vec-

tors, on which we can apply a principal component analysis. Each pathlet s is

approximated by:

s = s + Qsbs (5.6)

where s is a vector representing the mean pathlet of the group, Qs is a matrix

computed by the principal component analysis describing how the data varies, and

bs is the vector of parameters for that particular pathlet. The probability density

function of the set of parameters bs is modelled by a Gaussian, by computing the

mean and variance of bs for all pathlet s in the group. Work by Makris and Ellis

[64] has shown that for pedestrian trajectories, the distribution of paths around

a mean path is approximatively Gaussian.

In order to be able to perform the principal component analysis on a group of

pathlets, it is required that all the pathlets are encoded with the same number of
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(a) Before resampling

X

Y

(b) After resampling

Figure 5.9: Resampling using cubic splines. The trajectory on figure 5.9(b) rep-
resents the trajectory on figure 5.9(a) resampled to 50 points using cubic splines.
The data on figure 5.9(a) were created by manual drawing.

points. Therefore, we interpolate all the pathlets by cubic splines and homoge-

neously resample them to a given number of points [65]. Resampling to 50 points

has been found to give good results in our experiments. Figure 5.9 shows the

result of resampling a hand drawn trajectory using cubic splines.

Unfortunately the resampling process discards timing information. In the

original pathlets, we know that the time spent between two successive points

is constant1. In the resampled pathlets, we do not know the time between two

successive points. However, we need this information if we want to synthesise new

pathlet from the pathlet model. The next section describes how we can extend

the current model with timing information.

1The time spent between two successive points is 1
25 second if the original training video

sequence is taken at 25 frames per second.
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5.3.2 A spatiotemporal model

In order to be able to keep track of the timing information, we need to extract

the times for each point in a resampled pathlet . The pathlets are resampled so

that the length of the resampled pathlet is constant between successive points.

This process does not take the original timing into account. As we do not know

the exact time for each point of the resampled pathlet, we linearly interpolate

the time with the length of the curve for each segment of 1/25 seconds (the time

between points on the original pathlet).

Let δ be the vector containing the time to reach each point of a resampled

pathlet s. The new model of pathlet is the concatenation of the points of the

resampled pathlet as well as the times to reach those points from the beginning

of the pathlet. A pathlet is now represented by the vector
(
sT , δT

)T
.

Thus, the spatiotemporal model of a pathlet group becomes a linear combi-

nation of pathlets extended with timings. Each pathlet from a group is modelled

by the equation: 
 s

δ


 =


 s

δ


+ Qs,δbs,δ (5.7)

where
(
sT , δ

T
)T

is a vector representing the mean pathlet of the group along with

these timings, Qs,δ is a matrix computed by the principal component analysis

and describing how the data varies and bs,δ is the vector of parameters for that

particular pathlet. The probability density function of the set of parameters bs,δ

is modelled by a Gaussian, by computing the mean and variance of bs,δ for all

pathlets
(
sT , δT

)T
in the group.

Generation of pathlets is therefore a simple sampling from the distribution

of bs,δ. Applying equation 5.6 gives a pathlet s which is then resampled using

cubic splines, and timing information δ. The points are resampled to correspond

to times multiples of 1
25

second. We linearly interpolate the time between two

generated points and the length of the cubic spline curve between the points.

In some rare occasions, two consecutive generated points might have timings

that are going backwards in time. This can occur because we use a (symmetric)

Gaussian to represent strictly one sided (i.e. δ ≥ 0) data. Sampling from such

a distribution can occasionaly gerenate negative values. We could of course have

used a one sided probability distribution function such as the gamma distribution,

but we could not easily account correlations with the spatial variables. Instead



CHAPTER 5. FINDING AND MODELLING PATHLETS 83

when sampling, we simply discard the generated pathlet and sample a new value

for bs,δ from its probability distribution, to generate a new pathlet. This has

also the advantage of eliminating some outlier pathlets that might have been

generated without the timing model.

5.3.3 The spatiotemporal model with linear residuals

When generating several pathlets in sequence, one needs the output to be smooth.

However, by concatenating generated pathlets, the ends of the successive pathlets

might not match. In order to avoid this problem, we extend the spatiotemporal

to: 
 s

δ


 =


 s

δ


+ Qs,δbs,δ + Rs,δ (5.8)

where Rs,δ represents the residuals2.

In this work, we assume a linear spatial model for the residuals. It can be

computed given the last point of the previous pathlet.

We first generate a pathlet
(
s′T , δ′T

)T
in the same way we do using the spa-

tiotemporal model. We want the first point of this pathlet to match the previous

pathlet. Let’s call e the vector that translates the first point of
(
s′T , δ′T

)T
into

the last point of the previous pathlet. In order to obtain
(
sT , δT

)T
, we keep the

timings3 and translate the points of s′ so that:

sik = s′ik +

∑N−1
j=i δj∑N−1
j=1 δj

ek (5.9)

where ek is the kth coordinate of e, sik is the kth coordinate of the ith point in the

pathlet s, s′ik is the kth coordinate of the ith point in the pathlet s′ and δj is the

jth coordinate of δ. Figure 5.10 is an illustration of the application of equation

5.9.

This generating process gives a new pathlet that begins at the end of a pre-

viously generated pathlet, thus generating a more continuous overall trajectory.

However, this method is only valid if e is small. A large translation of points

can generate an unrealistic pathlet. In practise, this problem of generation hap-

pens if an unlikely sequence of pathlets is generated by the model of temporal

2The residuals represent the difference between a pathlet and its approximation by the linear
model.

3δ′ = δ
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Interpolated pathlet

Previous interpolated pathlet

Sampled pathletPrevious sampled pathlet

Figure 5.10: Linear model of residuals. The first point of the current pathlet is
moved to match the last point of the previous pathlet.

relationship between the pathlet models, described in chapter 6.

5.4 Grouping the pathlets

The previous section describes a method of modelling a group of pathlets. This

section describes how to cluster pathlets into groups of similar pathlets.

5.4.1 The grouping criterion

To group similar pathlets, one must define what “similar” means. A common

approach for clustering data is to derive a measure of similarity or a distance

between a pair of elements.

In a first attempt to cluster the pathlets into groups, we used this approach.

We built a similarity measure based on the dynamic time warping algorithm

commonly used in speech recognition [76]. A clustering algorithm was then used

to find the different groups. The algorithm we used for this approach is described

in section 5.4.2.

The approach leads to the potential problem of outliers. Grouping the pathlets

with our spatiotemporal model of pathlets requires that no outlier is used during

the model building. If an outlier is used, then the mean pathlet is shifted and the

distribution around the mean pathlet cannot be properly modelled by a Gaussian.

This effect leads to an improper pathlet model for the group containing the outlier.

Furthermore, we need pathlet models that are compact; groups with a wide

range of different pathlets are unlikely to be modelled properly. The way pathlets
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are grouped affects the quality of the resulting pathlet models. One has to group

the pathlets so that the models of the resulting groups are “good”. Since we

want compact models of groups that do not contain outliers, we define a “good”

pathlet model as being a model where the variance of the underlying Gaussian is

low. We have derived a new grouping algorithm that takes this specific criterion

into account. It is presented in section 5.4.3.

5.4.2 Grouping algorithm based on dynamic time warping

and normalised cuts

We derive a similarity measure based on the dynamic time warping algorithm,

then cluster the pathlets using the normalised cut algorithm.

5.4.2.1 The pathlet similarity measure

We wish to compare the pathlets in space only. The difference of timings are

modelled by the spatiotemporal model, so the similarity measure needs only to

assess the difference of shape between two pathlets.

Two points from different pathlets might have different speeds. The points

on two similar pathlets might not correspond to each other directly while still

describing the same curve in space. This problem of matching pathlets is similar

to the problem of matching phonemes in speech recognition. The phonemes can

be pronounced with different speed so the same point in time will not correspond

to the same part of the phoneme.

Dynamic time warping is commonly used to match phonemes [50]. It is a se-

quence alignment algorithm which non-linearly warps the timing of two sequences

to find the optimal match between the two sequences (see appendix A).

5.4.2.2 The normalised cut algorithm

We now have a similarity measure to compare two pathlets. We wish to cluster

the pathlets using this similarity measure. Clustering algorithms have been used

in a wide range of applications. However, our similarity measure does not verify

the triangular inequality. So clustering algorithms like the k-means algorithm

[70] cannot be used.

We require clustering algorithm based on a similarity measure and not a dis-

tance measure. We also need the algorithm to be efficient as the number of
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pathlets might be large for long training video sequences. We use the normalised

cut algorithm from Shi and Malik [88], described in appendix B.

The normalised cut algorithm returns a set of groups of pathlets. Each re-

sulting group of pathlets is modelled by a pathlet model.

5.4.3 The greedy algorithm

As we show later in this chapter, the algorithm based on the dynamic time warp-

ing and the normalised cut sometimes groups pathlets that look different. This

results in the creation of a poor pathlet models. This problem is due to the fact

that we are comparing pathlets in pairs using a similarity measure that is not

necessarily compatible with our grouping model. A global similarity measure for

several pathlets at a time would be much more appropriate since it can ensure

that a group is coherent, a property that is not guaranteed with a similarity

measure for only two pathlets. A global similarity measure leads to a groupwise

clustering rather than the pairwise clustering of the dynamic time warping and

normalised cut algorithm.

Furthermore, we want the similarity measure to be compatible with our group-

ing model. One logical choice for the similarity measure is the variance of the

group of pathlets. Indeed several pathlets are properly grouped if the variance

of the group is small. A large variance denotes a group containing pathlets that

look different to each other.

Unfortunately, we cannot use the same clustering algorithm. The normalised

cut algorithm is based on the use of a similarity matrix, which cannot easily be

created for a groupwise similarity measure. Instead, we use a greedy algorithm

to group the pathlets. At each step, the algorithm makes the best decision for

the grouping.

The algorithm first assumes that each pathlet given by the trajectory segmen-

tation initially forms a group by itself. Let S be this initial set of groups.

For every pair (gi, gj) of elements of S, we compute the variance of the group

gi∪j that is built using the pathlets from both gi and gj. We select the pair of

groups (ga, gb) that gives the lowest variance and merge those two groups to form

only one group. We delete ga and gb from S and insert ga∪b instead.

We iterate the process until we reach a given number of clusters nc.

We can also stop the algorithm if we reach a given variance so that we can

control the quality of the model. However, if we set this variance too low, we
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stop the algorithm too quickly and most of the resulting groups will only contain

one pathlet, making the use of pathlet models superfluous in our framework.

We prefer to control the number of pathlet models so that we can control the

computational complexity of the remaining steps in the framework.

Figure 5.11 summarises the greedy algorithm.

Create a pathlet group set S = {gi}1≤i≤N
containing empty pathlet groups.

For each i, add the ith pathlet to the group gi.

While |S| > nc do:

For all (gi, gj) ∈ S2 compute the variance of gi∪j

Select the lowest variance ga∪b
Add ga∪b in S
Remove ga and gb from S

Figure 5.11: The greedy algorithm.

5.5 The results

5.5.1 Results of clustering based on dynamic time warp-

ing and normalised cut

This section presents the pathlet groups extracted from original trajectories. The

normalised cut algorithm has been used for the grouping while the dynamic time

warping algorithm has been used for the similarity measure.

Tables 5.2 and 5.3 show pathlet groups extracted from the trajectory T1.

For each pathlet group, the nodes extracted from the original trajectory are

shown with black dots; the pathlets that form the group are drawn between

the nodes. The nodes have been generated using algorithm A4, as previously

illustrated in table 5.1 page 73.

Below those pictures, we represent the pathlet model by the generation of one

hundred random pathlets. This is done by sampling pathlets from the group,

with a Gaussian distribution around the mean pathlet, in order to represent the

variance of that group. Only dots representing the positions of the generated

points are shown for the reader to appreciate the modelling of timings.
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pathlet groups of trajectory T1
Group 1 Group 2 Group 3 Group 4 Group 5

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

Group 6 Group 7 Group 8 Group 9 Group 10

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

Group 11 Group 12 Group 13 Group 14 Group 15

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

Table 5.2: Pathlet groups for trajectory T1 (groups 1 to 15) based on dynamic
time warping and normalised cut clustering. For each group, the nodes are drawn
in the upper figure with the pathlets forming that group. Using the pathlet model,
one hundred generated pathlets are drawn in the lower figure.
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pathlet groups of trajectory T1
Group 16 Group 17 Group 18 Group 19 Group 20

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

Group 21 Group 22 Group 23 Group 24 Group 25

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

Table 5.3: Pathlet groups for trajectory T1 (groups 16 to 25) based on dynamic
time warping and normalised cut clustering. For each group, the nodes are drawn
in the upper figure with the pathlets forming that group. Using the pathlet model,
one hundred generated pathlets are drawn in the lower figure.
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Note that one can find four different types of pathlet models:

• pathlet models that model properly the variations observed with several

similar pathlets (models learnt from groups 3, 9, 11 or 21 in tables 5.2 and

5.3, for instance).

• pathlet models that have been build with only one pathlet. Those models

can only generate one pathlet since the variance in its training set of pathlets

is null; Qs,δ from equation 5.6 is therefore the null matrix (models learnt

from groups 20 and 25 in table 5.3, for instance).

• pathlet models that have been built with an outlier in their training set of

pathlets (models learnt from groups 2, 5, 6, 10, 12 or 24 in tables 5.2 and

5.3, for instance).

• pathlet models which have been trained on pathlets that do not look totally

similar (models learnt from groups 14 and 22 in table 5.2 and 5.3, for

instance).

Similar type of pathlet models can be observed when applying the algorithms

to trajectory T2 (tables 5.4 and 5.5) and trajectory T3 (table 5.6).

For instance for trajectory T2, the pathlet models corresponding to groups 3,

14 or 21 have been learnt on a set of pathlets containing outliers. The groups 1,

8 , 23, or 25 are correctly modelled, while the pathlet models corresponding to

groups 12 or 13 have been built using only one pathlet. Finally pathlet models

corresponding to the groups 6, 19 or 26 have been learnt on a set of pathlets that

do not look similar to each other.

Finally, the same types of pathlet models can be observed when extracting

pathlet groups form the trajectory T3 (see table 5.6).

Note that tables 5.2, 5.3, 5.4, 5.5 and 5.6 shows all the possible generated

pathlets. They include the pathlets that have been generated with negative tim-

ings. This often occurs where the pathlet groups contain outliers. For instance

the pathlet model corresponding to group 5 extracted from trajectory T1 can gen-

erate such impossible pathlets. Figure 5.12 shows pathlets generated from the

pathlet model of group 5 extracted from the trajectory T1. Pathlets generated

with negative timings are circled with a dotted circle. As mentioned in section

5.3.2, pathlets that have timings going backward in time are discarded and new
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Figure 5.12: Generation of pathlets with negative timings. A hundred pathlets
have been generated from the pathlet model learnt from the pathlet group 5
extracted from trajectory T1. The pathlets with negative timings have been
circled with a dotted circle. In practice we ignore such pathlets and sample
again.

pathlets are generated instead. We can see that this rejection of impossible path-

lets improves the output of the pathlet model. However the model still remains

weak since it can generate other unlikely pathlets.

Ideally, we prefer to have pathlet models that model the original data properly.

We want to avoid pathlet models modelling outliers as well as those modelling

pathlets that do not look similar to each other. The two other types of pathlet

models are able to model properly the original data.

Pathlet models built from pathlet groups that only contain one pathlet repro-

duce exactly the pathlet they have learnt. Since we want to avoid using original

frames to create the output video of our system, we would like to avoid such

models. However, we cannot discard those groups. Since we cannot generalise

from a group of pathlets with only one example, we have to copy them to be

faithful to the original data.

5.5.2 Results of clustering based on the greedy algorithm

This section presents the pathlet groups extracted from the original trajectory

using the greedy algorithm. Nodes are extracted from the trajectory using the
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pathlet groups of trajectory T2
Group 1 Group 2 Group 3 Group 4 Group 5
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X

Y

X
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Group 11 Group 12 Group 13 Group 14 Group 15
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Table 5.4: Pathlet groups for trajectory T2 (groups 1 to 15) based on dynamic
time warping and normalised cut clustering. For each group, the nodes are drawn
in the upper figure with the pathlets forming that group. Using the pathlet model
leant from that group, one hundred generated pathlets are drawn in the lower
figure.
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pathlet groups of trajectory T2
Group 16 Group 17 Group 18 Group 19 Group 20
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Group 21 Group 22 Group 23 Group 24 Group 25

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

Group 26

X

Y

X

Y

Table 5.5: Pathlet groups for trajectory T2 (groups 16 to 26) based on dynamic
time warping and normalised cut clustering. For each group, the nodes are drawn
in the upper figure with the pathlets forming that group. Using the pathlet model
learnt from that group, one hundred generated pathlets are drawn in the lower
figure.
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pathlet groups of trajectory T3
Group 1 Group 2 Group 3 Group 4 Group 5

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

Group 6 Group 7 Group 8 Group 9

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

Table 5.6: Pathlet groups for trajectory T3 (groups 1 to 9) based on dynamic
time warping and normalised cut clustering. For each group, the nodes are drawn
in the upper figure with the pathlets forming that group. Using the pathlet model
learnt from that group, one hundred generated pathlets are drawn in the lower
figure.
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mean shift based algorithm (A4) as in the previous section.

Table 5.7 shows the pathlet groups extracted from trajectory T1. As in the

previous section, for each cell of the table, the figure at the top represents the

pathlets used to create the pathlet group along with the nodes extracted from the

original trajectory, while at the bottom one hundred pathlets have been generated

using the pathlet model. Most types of pathlet model can be found.

For instance, sets of pathlets have been correctly grouped (group 4 or group

11). A group containing a single pathlet can also be seen (group 12). Some groups

contain outliers (group 1 contains two pathlets that end in different locations to

the other pathlets in the group). However, the associated pathlet model seems

to model the original data quite faithfully. No pathlet that looks impossible has

been generated from the pathlet model learnt from group 1.

Pathlet groups 2 or 8 are also amongst those that contain an outlier. The cor-

responding model sometimes generates pathlets with negative timings. As in the

previous section, this is due the fact that very short pathlets have been included

in the model. However, we can see that this only happens if the other pathlets in

the group are short themselves. After discarding a pathlet with negative timings,

the new sampled pathlet is likely to be reasonable.

We can argue that group 6 in table 5.7 contains pathlets that do not look like

each other, but once again the model represents the original pathlets rather well.

We can see on tables 5.8 and 5.9 that the pathlet models encode the same

structures as the original pathlets used to build the models. Only similar pathlets

are grouped together. The groups that have been created with only one pathlet

only contains the outliers. Indeed, pathlet groups like group 20, 21, 22 or 23

contain pathlets that are not common. This is mainly due to errors in the selection

of the nodes in the original trajectory. For instance the pathlet in group 21 should

have been split into 3 pathlets.

The greedy algorithm is able to cope with imperfections in the node selection

process. This quality of the greedy algorithm is useful since the node selection

algorithm is not always perfect. The normalised cut algorithm, along with the

similarity measure based on the dynamic time warping algorithm, is not always

able to recover proper pathlet groups in the case of a failure to select good nodes

in the original trajectory. For instance, the pathlets in the group 19 on table

5.9 have been clustered has a part of the group 2 in table 5.4. The pathlets in

group 19 on table 5.9 should have been split into two pathlets each with extra
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pathlet groups of trajectory T1
Group 1 Group 2 Group 3 Group 4 Group 5
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Table 5.7: Pathlet groups for trajectory T1 (groups 1 to 12) based on the greedy
algorithm. For each group, the nodes are drawn in the upper figure with the
pathlets forming that group. Using the pathlet model learnt from that group,
one hundred generated pathlets are drawn in the lower figure.
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pathlet groups of trajectory T2
Group 1 Group 2 Group 3 Group 4 Group 5
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Table 5.8: Pathlet groups for trajectory T2 (groups 1 to 15) based on the greedy
algorithm. For each group, the nodes are drawn in the upper figure with the
pathlets forming that group. Using the corresponding pathlet model, one hundred
generated pathlets are drawn in the lower figure.
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pathlet groups of trajectory T2
Group 16 Group 17 Group 18 Group 19 Group 20
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Table 5.9: Pathlet groups for trajectory T2 (groups 16 to 23) based on the greedy
algorithm. For each group, the nodes are drawn in the upper figure with the
pathlets forming that group. Using the corresponding pathlet model, one hundred
generated pathlets are drawn in the lower figure.
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pathlet groups of trajectory T3
Group 1 Group 2 Group 3 Group 4 Group 5
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P2
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Table 5.10: Pathlet groups for trajectory T3 (groups 1 to 7) based on the greedy
algorithm. For each group, the nodes are drawn in the upper figure with the
pathlets forming that group. Using the corresponding pathlet model, one hundred
generated pathlets are drawn in the lower figure.
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nodes. The wrong clustering in table 5.4 is due to the fact that the dynamic time

warping tends to match those pathlets with one of the two pathlets that would

have been used instead. It compares badly extracted pathlets with pathlets that

are similar to parts of those badly extracted pathlets.

This is a general problem of the dynamic time warping algorithm: it matches

parts of pathlets and shrinks the time of the reminder of the pathlets to zero for

the comparison, thus forcing wrong matchings.

Table 5.10 shows that the greedy algorithm performs correctly on data ex-

tracted from a video of a face (trajectory T3 corresponding to the video sequence

V1 described in section 4.3.1).

We can also note that, for each trajectory (T1, T2 or T3), the greedy algorithm

requires fewer pathlet groups than the algorithm based on the normalised cuts

and the dynamic time warping algorithms for visually similar pathlet quality.

Finally, we can note that, with the greedy algorithm, some pathlet groups

appears very similar. Two corresponding models generate pathlets in opposite

directions. Similar pathlets with two different directions cannot be modelled

properly by the same pathlet model. Examples of such corresponding pathlet

groups include the pathlet groups 1 and 10 and the pathlet groups 6 and 12 in

figure 5.8. Pathlet groups extracted from real video sequences also show such

correspondences as we can see on figure 5.10: the pathlet group 1 corresponds to

the pathlet group 2 and the pathlet group 3 corresponds to the pathlet group 4.

5.6 Conclusion

This chapter explained the approach used to model fragments of behaviour. We

split the original trajectory into pathlets by extracting nodes from the trajectory.

These are grouped, and each group is modelled with a Gaussian spatiotemporal

representation.

Several algorithms have been investigated for node selection. For the remain-

der of the thesis, we use algorithm A4 (page 76). This algorithm, based on the

mean shift algorithm, gives a better distribution of splitting nodes in the trajec-

tory.

A spatiotemporal model of a pathlet group has been derived. This model

has been extended to model the residuals as well. However, it is not clear that

this extended model improves the quality of generated pathlets. In chapter 8, we
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assess the whole framework with and without the residual modelling.

We have developed two algorithms for grouping pathlets. We have shown

visually how the greedy algorithm of section 5.4.3 outperforms the clustering of

pathlets based on the normalised cut algorithm with a similarity measure based

on the dynamic time warping algorithm.

The greedy algorithm is able to create pathlet groups whose models best

represent the data, that is the groups they have been trained on. The approach

using the normalised cuts algorithm and the dynamic time warping algorithm has

more trouble creating proper pathlet models. The extracted models can generate

unlikely pathlets. The main reason for that is due to the similarity measure

which is not strict enough when comparing the pathlets. It can favour grouping

of pathlets that only have small parts that match together.

Even if the grouping of pathlets seems to give good clusters4, it does not mean

that those groups are well modelled by a linear pathlet model. For grouping,

the algorithm, and especially the criterion used for comparing pathlets in this

algorithm, has to be adapted to the situation as we adapted the node extraction

process to the model of a group5.

In the remainder of the thesis, we use the greedy algorithm to extract pathlet

groups from a trajectory.

In the next chapter, we describe the variable length Markov model and how it

can be used to model the sequence in which each pathlet model should be visited.

4as it is the case for the clustering algorithm based on the normalised cuts and the dynamic
time warping algorithms.

5remember that we select nodes that are close to each other to have better chances to group
the extracted pathlets together by a linear model.



Chapter 6

Variable length Markov model

6.1 Introduction

Figure 6.1: Overview of the components of the model. This chapter explains how
to model temporal relationship between pathlet models.

The previous chapter demonstrated how to extract a sequence of pathlet mod-

els from a trajectory of active appearance model parameters. We now describe

how a variable length Markov model can be used to model the sequence.

In the following, we describe the VLMM along with the different components

that can be used within its learning scheme. Figure 6.1 shows how the VLMM

module fits into the whole framework of our model.

102



CHAPTER 6. VARIABLE LENGTH MARKOV MODEL 103

6.2 Encoding transition probabilities

6.2.1 The storage of transitions

Let S be a sequence of states {Gn,Gn−1, . . . ,G2,G1}. We want to predict or

generate the next state G0 given the history S. In order to do that, we need the

probability:

P (N|Gn,Gn−1, . . . ,G2,G1)

for all possible states N.

We can use Markov models to learn such probabilities from typical sequences

[77]. In this case, as we want to predict a pathlet model given an history of

n pathlet models, we are interested in n-th order Markov models or n-th order

hidden Markov models.

Unfortunately, high order Markov models can be vastly more expensive than

their first-order counterparts. The memory required to store all the transition

probabilities and the processing time required to train them are serious issues

especially for large number of states.

Here the states are defined by the pathlet models. We call them: “pathlet

states”. Depending on the method used to find the pathlet models (see chapter

5) and the training video sequence, the number of pathlet models found can

potentially be huge. The size of the pathlet model set can even be larger if

we wish to model interaction1. Some form of dimensionality reduction is thus

required.

The variable length Markov model provides an efficient way of storing the

transition probabilities [81]. It is an approximation of a n-th order Markov model

where the transitions that do not bring useful information are discarded.

6.2.2 Towards a more effective storage of transitions

A Markov model of N states needs to store a matrix of transition probabilities

of size N2.

Furthermore, in a standard Markov model, with our kind of data, many tran-

sition probabilities will be either zero or insignificant. Indeed, in a video sequence

1If we model interaction by modelling the joint probability of the two speakers, the cardi-
nality of the resulting pathlet model set could be as large as the product of the cardinality of
the pathlet model sets modelling each speaker individually.
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of an object, the trajectory of the object is often continuous and does not jump

randomly from one position to another. When the object is in a position corre-

sponding to one pathlet model, only a few pathlet models can can be used for

the next position in the sequence. In the transition matrix, all of the impossible

configurations are modelled by a probability of zero.

In some other situations, the transition probability is very low. Such situations

can include atypical behaviours that happened only once during the training

stage. In this case, we may want to discard these transitions since they do not

reflect representative situations. A low probability transition can also come from

the hardware used to capture the video sequence. A slow computer may drop

some frames when the user is running a resource consuming process. This will

result on sudden jump of the object within the sequence, and so an atypical

behaviour. The same effect can be achieved if a recorded video sequence has not

been correctly encoded in digital format.

It would be better not to store these values as they are generally unnecessary.

The variable length Markov model gives a solution to this problem because it

discards small probabilities and also transitions that do not add any useful infor-

mation to the model. The transition probabilities storage needs to be rearranged

for efficiency.

In the VLMM model, the transition probabilities are encoded in a tree. Figure

6.2 shows such a tree. Figure 6.2(a) represents the standard storage in VLMM

as described in [81]. Figure 6.2(b) represents the way we have stored the prob-

abilities. We can easily map between the two. Our storage is more efficient in

retrieving probabilities for our application, but the gain is negligible compared

to the other sources of computation.

Each branch of the tree represents a transition probability. In this case, the

set of pathlet models is {A,B,C}. A pathlet model, a position in the history

and a vector of probabilities is associated with each node. The size of the vec-

tor is the same as the size of the set of pathlet models. Each element in the

vector corresponds to a immediate child. If the value in the vector is null, the

corresponding child is not drawn on the tree. On figure 6.2(b), it stores the joint

probability of having this child and all the pathlet models seen so far on their

respective positions in the history.

For instance, the node B2 corresponds to the pathlet model B at the position

2 in the history. The second element in the vector associated with the node
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[0.6;0.4;0]

A1[0.1;0.6;0.3]

A2 B2[0;0.2;0.8]

B3 C3

C2

B1[0.5;0;0.5]

A2 C2

(a) Standard VLMM

[0.6;0.4;0]

A1[0.06;0.36;0.18]

A2B2[0;0.072;0.288]

B3 C3

C2

B1[0.2;0;0.2]

A2 C2

(b) Modified storage

Figure 6.2: Example of storage of transitions in a VLMM model. The two way
of storing the probabilities are equivalents. 6.2(a) stores conditional probabilities
while 6.2(b) stores joint probabilities. From 6.2(a) we can deduce for instance
the probabilities P (G3 = B|G2 = B,G1 = A) = 0.2 , or P (G2 = C|G1 = A) = 0.3.
From 6.2(b) we can deduce the probabilities P (G3 = B,G2 = B,G1 = A) = 0.072
, or P (G2 = C,G1 = A) = 0.18.

B2 correspond to the probability of B (the second pathlet model) being at the

position 3 (one step further in the history) given that the total sequence ends with

the subsequence B,A. Using mathematical notation, the second element in the

vector associated with the node B2 is the probability P (G3 = B,G2 = B,G1 = A)

that is the probability of having the sequence B,B,A. The end of this sequence

corresponds to the nodes B2 and A1 that need to be retrieved from the tree to

reach B3.

On figure 6.2(a), the vector stores the probability of having a child at its

corresponding position in the history given that all the nodes seen so far are

placed on their respective positions in the history.

For instance, the second element in the vector associated with the node B2

corresponds to the probability of B being the third in the history given that B

is the second and A is the first, that is: P (G3 = B|G2 = B,G1 = A) .

This tree representation of the storage is also called a prediction suffix tree.

It is proved in [82] that a prediction suffix tree is equivalent to a finite state

automata. It is also equivalent to a transition matrix as used by Markov models.
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6.3 Training a VLMM

6.3.1 Definitions

Variable length Markov models (VLMM) were designed to learn text, that is

sequence of letters. We will keep the original terminology and map it to our

problem. In the next sections, we will use the following definitions.

An alphabet Σ is a set of predefined distinct entities. In the case of a sequence

of letters, the entities would be letters. In the case of a sequence of a face, the

entities would be the pathlet models. We will refer to these entities as being

letters to stick to the original definitions given by Ron et al. [81]. |Σ| denotes

the size of the alphabet.

A string is a sequence of letters and is denoted by s = s1s2s3 . . . sn where n is

the length of the sequence. |s| denotes the number of letters in the string s. We

denote by e the empty string (|e| = 0). Σ∗ is the set of all strings over Σ, ΣL is

the set of all strings of length L over Σ, and Σ≤L is the set of all strings of length

at most L over Σ.

A prefix of a string s of length n is denoted by prefix (s) = s1s2s3 . . . sn−1. In

the same manner, a suffix of a string s of length n is denoted by suffix (s) =

s2s3 . . . sn. The set of all suffixes of a string s of length n is suffix ∗(s) =

{si . . . sn|1 ≤ i ≤ n} ∪ e.
A string p is a suffix extension of s if and only if s is a suffix of p, that is

s ∈ suffix ∗(p).

6.3.2 The learning algorithm

6.3.2.1 General idea

The idea behind the learning algorithm is that for different sequences, we need

different lengths of memory for the prediction of the next element. For instance, if

the learning has been done with many instances of sequences such as {a,c,b,d,e,f},
{e,c,b,d,e,f} or {d,c,b,d,e,f} then we would like to use a memory of four letters:

{c,b,d,e} in order to predict the next letter “f”. If only sequences like {a,l,k,j,e,f},
{s,d,l,l,e,f} or {s,l,o,a,e,f} occurs, then we want to use only the necessary infor-

mation to predict “f” that is the sequence of one letter: {e}. We do not model

the patterns in the sequence that are not important for the prediction.
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In a more formal way, we wish to learn a model of the distribution of prob-

abilities of strings in the sequence as suggested by the figure 6.2(b) but with a

minimum number of nodes. The idea is to build a tree that gives the same proba-

bility values as a previously chosen probability measure on the learning sequence.

The section 6.3.3 describes the probability measures that we have tried on a sim-

plified example and how they performed. For now we can use the notation P̃ to

denote this probability measure.

6.3.2.2 The pruning of nodes

The construction of the tree is iterative and begins with the root node. An empty

string e is assigned with the root node. We then add candidates nodes up to a

depth L. If the probability of a string is small then the node should not be in the

tree. We decide whether a probability is small by comparing it with a predefined

threshold that represents the accuracy of the model. This threshold is defined by

the user. We denote it by ε.

There is another reason not to add a node in the tree: if the addition of the

node gives a new tree that is statistically equivalent to the previous one. We need

a way of checking if two distributions of probability are equivalent. In section

6.3.4 we describe the different measures of distance between probabilities that

we have investigated and how they behave. For now, we denote by D(P1‖P2) a

measure of the distance between two probability measures P1 and P2 over the

observation space.

The distance D can measure the amount of additional information we gain

by adding the suffix σs to the tree instead of pruning the node σ and keeping

the suffix s to describe the distribution. Given this measure of distance between

two probabilities P̃ (·|σs) and P̃ (·|s), we can construct a statistical error measure

by weighting it with the prior probability of observing the suffix σs. Indeed, the

distance D
(
P̃ (·|σs)‖P̃ (·|s)

)
can be large even if the probability of observing the

sequence σs is very small. Weighting the distance by P̃ (σs) allows us to neglect

those cases. The statistical difference is then measured by

Err(σs, s) = P̃ (σs) ·D
(
P̃ (·|σs)‖P̃ (·|s)

)

Err is called the statistical error measure.
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6.3.2.3 The algorithm

Given the statistical error measure, we can construct the tree using the following

algorithm:

• Initialisation step:

- The tree T is initialised to a single node: e.

- The set of candidate sequences S is initialised to
{
σ|σ ∈ Σ, P̃ (σ) ≥ ε

}
.

• While there is still a sequence to be tested (that is, S 6= ø), do:

1) Pick the first candidate sequence s ∈ S and remove it from the set S.

2) If Err (s, suffix(s)) ≥ ε then add to T the node corresponding to s.

3) If |s| < L then for every sequence σ ∈ Σ, if P̃ (σs) ≥ ε add σs to the

end of the candidate sequence set S.

6.3.3 The estimation of observed probabilities

One problem that arises when one deals with finite sequences is that of estimating

the probabilities. The true underlying probability is not known. The probabilities

must be estimated. We investigated several ways of estimating probabilities from

sequences of letters (or pathlet models respectively). The details of the different

laws of succession mentioned here can be found in [80].

We denote by ns the number of times the sequence s is observed as being

a subsequence of the training sequence. The training sequence is supposed to

represent the population of sequences we will have to deal with, that is samples

from the probability distribution we want to model. We denote by Ns the number

of possible subsequences of size |s| in the training sequence, that is:

Ns =
∑

s′∈Σ|s|
ns′

Note that Ns = L + 1− |s|, where L is the size of the training sequence.

Furthermore, the conditional probability P (σ|s) is by definition:

P (σ|s) =
P (sσ)

P (s)
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We only need to estimate the probabilities of a subsequence s within a training

sequence. The different laws of succession give us such estimates.

6.3.3.1 Laplace’s law of succession

This is Laplace’s first attempt to estimate probabilities of events occurring consec-

utively in a sequence. Its goal is to estimate the probability of an event occurring

n+ 1 times in succession given that the event occurred n times in succession.

The law can be found using the following reasoning:

Suppose that we have N + 1 coins that we label from 0 to N . Each coin

has a different probability of landing heads up. The coin i lands heads up with

a probability of i/N . We assume that the coins can be chosen with a uniform

probability. We can then choose a coin and toss it again and again.

The probability that the first n toss are all heads for this particular coin is

given by:

P (n heads|coin = i) =
(
i

N

)n

So, the probability of observing n heads in a row in this experiment is:

FN,n = P (n heads) =
N∑

i=0

P (coin = i) · P (n heads|coin = i) =
1

N + 1

N∑

i=0

(
i

N

)n

Furthermore:

P (n+ 1 heads|n heads) · P (n heads) = P (n heads|n + 1 heads) · P (n+ 1 heads)

If the first n + 1 toss are all heads, the first n toss are all heads too, so

P (n heads|n+ 1 heads) = 1

and

P (n+ 1 heads|n heads) =
FN,n+1

FN,n

We want this to be true in general and not only for a finite number of possible

probabilities
{
i
N

}
i
. In order to do that, we have to take an infinite number of

coins with probabilities describing the possible range of probabilities [0, 1]. The

probability we are looking for becomes:
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P (n+ 1 heads|n heads) = lim
N→∞

FN,n+1

FN,n

The properties of integrals give us:

lim
N→∞

FN,n =
∫ 1

0
xn dx =

[
xn+1

n+ 1

]1

0

=
1

n + 1

So we can express the solution with this simple formula:

P (n+ 1 heads|n heads) =
n+ 1

n+ 2

This is a special case of the Laplace’s law of succession. The key observation is

that a uniform probability prior is required to apply the formula2. In practice we

do not know the distribution of the priors. Furthermore, the priors may depend

on the context, so we cannot compute them and thus we have to make a choice. It

has also been proved (see [46] for instance) that the Laplace’s formula is general

and gives the same result with other forms of prior probabilities.

In our case, the formula can be extended and we can compute the probability

of a sequence s being sampled next given that we observed a sequence of Ns

sequences [46] . An estimate of the probability of the sequence s is3:

P (s) =
ns + 1

Ns + |Σ|

This way of estimating the probabilities was used by Ron et al. to train a

variable length Markov model [81].

6.3.3.2 The maximum likelihood estimate

Another empirical probability measure that can be used is the maximum likeli-

hood estimate:

P (s) =
ns
Ns

2We used a uniform probability for the coin selection.
3The particular case demonstrated above computes the probability of having the event “the

next toss is a head” given that we have observed the sequence of event where all the previous n
tosses observed were heads. Thus we have ns = n because all the tosses observed were heads,
Ns = n because n toss were observed and |Σ| = 2 because there were 2 possible events for each
toss: heads or tails.
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This estimate is frequently used because of its simplicity, and because it gen-

erally gives correct results.

It was used by Guyon and Pereira [39] to train a variable length Markov model

on strings. It has also been used by Galata, Johnson and Hogg [33] to train a

variable length Markov model on the pathlet models derived from flow vectors.

6.3.3.3 Lidstone’s law of succession

The Lidstone’s law of succession is given by:

Pλ(s) =
ns + λ

Ns + |Σ|λ
where the parameter λ is in the range [0,+∞[. It has been shown that this

class of probability estimates is in fact a linear interpolation between the maxi-

mum likelihood estimate given in section 6.3.3.2 and the uniform prior 1
|Σ| . Indeed,

we can define a new constant µ by:

µ =
Ns

Ns + |Σ|λ

We then have a new form for the estimate given by Lidstone’s law of succession:

Pµ(s) = µ
ns
Ns

+ (1− µ)
1

|Σ|

It is interesting to consider particular cases of the Lidstone’s law of succession:

- λ = 0 gives the maximum likelihood estimate.

- λ = 1 gives Laplace’s law of succession.

- if λ tends to ∞ then we have the uniform estimate 1
|Σ| .

λ thus represents the trust we have in relative frequencies. λ < 1 implies

more trust in relative frequencies than the Laplace’s law of succession while λ > 1

represents less trust in relative frequencies. In practice, people use values of λ in

the range
[

1
32
, 1
]
, a common value being λ = 1

2
[81].

6.3.3.4 The natural law of succession

The natural law of succession presented in [81] is a more complex law of succession.

It is based on the fact that simple sequences are more probable than complex
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sequences. The probabilities are then estimated using a more appropriate subset

of the alphabet. Alphabets are usually large, and so natural sequences do not

include all the elements of the alphabet. The number of possible subsequences

found in the observed sequence is given by:

q = |{s|s ∈ Σ∗, ns > 0}|

The formula can then be derived as follow:

P (s) =





ns+1
Ns+|Σ| if q = |Σ|
(ns+1)(Ns+1−q)
N2
s+Ns+2q

if q < |Σ| and ns > 0
q(q+1)

(|Σ|−q)(N2
s+Ns+2q)

otherwise

It has been proved both in theory and in practice that this law of succession

outperforms the previous ones.

Unfortunately, from a practical point of view, the natural law of succession is

too computationally expensive. Indeed, the computation of the formula requires

the value of q. The computation of q is done by counting the number of all sets of

similar subsequences of any size in the observed sequence. Furthermore, the vari-

able length Markov model learning algorithm uses extensively the estimation of

observed probabilities. We cannot afford a loss of performance for this estimation

so we will not consider the law of succession in the rest of this thesis.

6.3.4 Comparison of the probability distributions

The tree in the VLMM approximates a probability distribution. When building

the tree, we need to test whether adding a particular node makes a significant

difference to the accuracy of the approximation. We thus need methods of com-

paring distributions.

6.3.4.1 The Kullback-Leibler divergence

Let p and q describe two measure of probabilities, the Kullback-Leibler divergence

is given by:

DKL(p‖q) =
∫
p(x) ln

(
p(x)

q(x)

)
dx
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In our case we have modelled the probabilities P̃ by discrete values on a known

alphabet Σ, so:

D
(
P̃ (·|σs)‖P̃ (·|s)

)
=
∑

σ′∈Σ

P̃ (σ′|σs) ln

(
P̃ (σ′|σs)
P̃ (σ′|s)

)

Thus:

Err(σs, s) =
∑

σ′∈Σ

P̃ (σsσ′) ln

(
P̃ (σsσ′)P̃ (s)

P̃ (σs)P̃ (sσ′)

)

This measure of a distance between probabilities has been used in [81] together

with the Laplace’s law of succession in order to correct corrupted texts using a

variable length Markov model.

6.3.4.2 The Matusita distance

The Matusita measure between two probability distributions p and q is given by:

DB(p‖q) =
∫ (√

p(x)−
√
q(x)

)2

dx = 2− 2
∫ √

p(x) · q(x) dx

where x describe the whole space again. The term
∫ √

p(x) · q(x) dx is called

the Bhattacharyya measure [1]. In our case the distance becomes:

D
(
P̃ (·|σs)‖P̃ (·|s)

)
= 2− 2

∑

σ′∈Σ

√
P̃ (σ′|σs) · P̃ (σ′|s)

Thus:

Err(σs, s) = 2P̃ (σs)− 2P̃ (σs)
∑

σ′∈Σ

√√√√ P̃ (σsσ′)P̃ (sσ′)

P̃ (σs)P̃ (s)

Unlike the Kullback-Leibler divergence, the Bhattacharyya term is symmetric

and is invariant to scale in the case of two Gaussian probability density distribu-

tions. The Matusita measure inherits these properties.

6.4 Prediction using VLMM

Variable length Markov models provide compact models of sequences that have

the same characteristics as traditional Markov models. In particular we can

generate stochastic synthetic sequences from a model. In order to do that, we

only have to sample a new element after the sequence s from the distribution
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given by the set of probabilities:

{
P̃ (σ|s)|σ ∈ Σ

}

where every element is proportional to the probabilities in the set:

{
P̃ (sσ)|σ ∈ Σ

}

A maximum likelihood generation is also possible by taking the element that

maximise the probability P̃ (σ|s).
In order to be able to compare similar measurements, we need to use the

same observed history s for each probability computed for a prediction. It is not

meaningful to compare probabilities of sequences that encode different lengths

of history. We set the size of s to a predefined value. The sequences should be

long enough to take all the useful information into consideration. A good value

would be L, the maximum depth of the VLMM tree generated by the learning

algorithm.

If the sequence sσ is encoded in the VLMM tree, the corresponding proba-

bility is given by the vector associated with the parent node (the last node of

the sequence suffix (s)σ). For instance, the probability of having the sequence

{B,B,A} in figure 6.2(b) is given by the second value of the vector associated

with B2, that is 0.072. But what about the sequence {B,C,A} ? Indeed, this

sequence is not represented in the tree, so we cannot find the probability directly

in one of the vector of the tree. In that case, we cannot really compute the value

of the probability because we do not have enough information to do so. How-

ever, we can assume that the probabilities of the missing elements are uniform.

Elements are missing because either:

- they have not been observed in this context in the training sequence, in

that case we cannot know their real probabilities and we have to decide an

empirical probability, or

- they have been pruned during the training algorithm because they did not

bring any valuable information. We can chose a uniform probability in order

to compare them to elements that might have brought information.

So, in order to compute the probability of the sequence {B,C,A}, we multiply

the probability 1
|Σ| of having the element B followed by the sequence {C,A} by
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the probability of having the sequence {C,A} (0.18 in our case).

If we require a longer generated trajectory, we can continue adding pathlet

states to the sequence B,C,A in the same way to get a sequence of pathlet states

S of length n.

This algorithm needs initialising with a sequence of states. One way of doing

it can be to assume a null history at the beginning. In practice, we just generate

a random sequence of states of size n. We then add n states to that sequence

and remove the n first states, giving us the sequence S. We then only use the

last n elements of S to add the states to the sequence. If we choose n to be the

maximum number of levels in the VLMM tree, all the other elements of S will be

associated with a uniform probability since they will not appear in the VLMM

tree4. This is simpler to implement in practice since the history has a constant

size. The states added to S at the beginning are not very likely but become more

and more likely as the last n elements of S form a likely sequence of states.

Note that another possible generation method involves sampling directly branches

of the VLMM tree. Even if it is a cheap way a generating sequences, it is not

correct because it does not take the history into account. Histories should be used

when the VLMM is used for prediction. We want to generate behaviour, so we

need to look at the history for every element generated. Otherwise the generated

sequence will look like small pieces of behaviour concatenated one after the other,

without any natural link.

6.5 VLMM results

This section presents the results we obtained in the evaluation of the variable

length Markov model. All results have been obtained using texts as learning

sequences, allowing quantitative assessment of the performance of the algorithms.

The results are summarised in tables 6.2 and 6.3 (page 124).

6.5.1 Comparison of the Lidstone probability estimation

with the maximum likelihood probability estimation

We have compared the effect of using the Lidstone and the maximum likelihood

estimation of probability during model training. The comparison is done twice:

4In practice we choose n as well as the depth of the VLMM tree to be 10.
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once in conjunction with the Matusita distance and a second time in conjunction

to the KL divergence. The experiments have been done on sequences of letters.

The VLMM has been trained on English texts. The results are presented in a

form of a tree where every element that has a probability higher than 0.003 is

shown. The sequences should be read from the leaves to the root of the tree. For

instance figure 6.3 shows the sequences “rea”, “ha”, “la” and so on, from left to

right.

6.5.1.1 Comparison of trees built using the Matusita distance

For these experiments, the VLMM has been trained on a text (2144 letters). The

training text tells the story of penguins and other animals.

Figures 6.3, 6.4, 6.5 and 6.6 represents the resulting tree when trained using

the Matusita distance. The Lidstone estimation of probability has been used with

λ varying from 0 to 1. The case λ = 0 corresponds to the maximum likelihood

estimate and the case λ = 1 correspond to Laplace’s law of succession.

Figure 6.3: VLMM tree learnt using the maximum likelihood estimation of prob-
ability and the Matusita distance. ε is set to 0.003 and only the nodes with
probabilities that are greater than 0.003 are shown on the graph.

We can see that the topology of the tree evolves a lot from the case λ = 0 to

the case λ = 1.

For the case λ = 1 (figure 6.6), the depth of the tree is one. That means that

the model does not take histories into account. It only models the probability
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Figure 6.4: VLMM tree learnt using the Lidstone estimation of probability with
λ = 0.05 and the Matusita distance. ε is set to 0.003 and only the probabilities
that are greater than 0.003 are shown on the graph.

of having a letter in the alphabet. We can notice that some letters like “j” or

“q” are not in the tree because of their low probability in English texts, and in

particular in our example text. As we have seen before, this is the problem with

Laplace’s law of succession because it is built on the assumption of a uniform

prior.

In the case λ = 0 (figure 6.3), the tree seems to have learnt the text in a more

appropriate manner. We can find parts of some words like “peng” which comes

from “penguin” (main subject of the text). We can also find small words such as

“the”, “of”, “in”, “on” or “as”.

The two other cases are a transition between those two extremes.

This qualitative evaluation seems to be favorable to the maximum likelihood

estimation. A quantitative evaluation of these trees is given later.

6.5.1.2 Comparison of trees built using the Kullback-Leibler diver-

gence

We repeated the experiment using the KL divergence to compare probability

densities. Figures 6.7, 6.8 and 6.9 show the resulting trees.

The method of estimation of probability seems to exert less influence on the

result. In the case of the maximum likelihood estimate the tree does not change

significantly compared to the corresponding case in the previous section. The
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Figure 6.5: VLMM tree learnt using the Lidstone estimation of probability with
λ = 0.1 and the Matusita distance. ε is set to 0.003 and only the probabilities
that are greater than 0.003 are shown on the graph.

Figure 6.6: VLMM tree learnt using the Laplace estimation of probability and
the Matusita distance. ε is set to 0.003 and only the probabilities that are greater
than 0.003 are shown on the graph.

two other trees have grown.

The aim of the variable length Markov model is to reduce the number of links

required to model the probability distribution. The size of the tree influences

directly the learning because the more nodes there are in the tree, the more nodes

the learning algorithm has to check. So it is possible that the KL divergence gives

us a less efficient tree.

Due to the small amount of data used to construct these trees, the learning

using the KL divergence in the two last cases can give such a tree because the

text has been over learnt. In order to make sure that it is not the case, a further

experiment has been done.
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Figure 6.7: VLMM tree learnt using the maximum likelihood estimation of prob-
ability and the Kullback-Leibler divergence. ε is set to 0.003 and only the prob-
abilities that are greater than 0.003 are shown on the graph.

6.5.2 Comparison of trees built using the Matusita mea-

sure with trees built using the Kullback-Leibler di-

vergence for large texts

In order to have a correct qualitative comparison of the Matusita measure and

the KL divergence, we trained a VLMM tree on a much larger text. The text was

a compilation of journalistic style articles from the news, 70000 characters long.

Figures 6.10 and 6.11 show the learnt trees for a VLMM using a KL divergence

and a Matusita distance respectively.

We can see that the two trees look similar. The tree learnt with a Matusita

distance has a depth of six and the KL divergence gave a tree with a depth of

three5. The method using the Matusita distance is able to encode more history in

the tree while still not using so many nodes. It encodes small parts of words, but

also short words such as “said”, “and”, “the”, “of” or “to”. The method using

the KL divergence is not able to find words in the text, it only encodes parts of

words.

The fact that humans group letters into words suggest that a word is a coher-

ent sequence of information and the letters at the extremity of the word are less

5note that the depth of trees learn in section 6.5.1 was limited to four in order to limit the
computational cost
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Figure 6.8: VLMM tree learnt using the Lidstone estimation of probability with
λ = 0.5 and the Kullback-Leibler divergence. ε is set to 0.003 and only the
probabilities that are greater than 0.003 are shown on the graph.

linked to the other words than to the word itself. This suggests that the method

using the Matusita measure is better at representing groups of natural sequences.

6.5.3 Quantitative assessment of the prediction

In order to assess the prediction properties of the variable length Markov model,

we used a test text and predict each letter using the sequence of previous letters.

So, a sequence corresponding to the beginning of the test text is given to the

VLMM and the prediction of the next letter is compared to the next letter in the

test text. We records the proportion of correctly predicted letters.
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Figure 6.9: VLMM tree learnt using the Laplace estimation of probability and
the Kullback-Leibler divergence. ε is set to 0.003 and only the probabilities that
are greater than 0.003 are shown on the graph.

6.5.3.1 Performance given a large training set

In this section, the learning text E1 is 70000 letters long. The learnt VLMM has

been tested on 3 texts:

• E1 - the training text (70000 characters).

• E2 - a text similar in style and content (5218 characters).

• E3 - a completely different text (2144 characters).

The prediction capabilities (percentage of letters correctly predicted) are re-

ported on table 6.1. The results show similar performances on each text, but

the Matusita measure gives markedly better predictions than the KL divergence

(note that a flat prior would achieve about 1
|Σ| ≈ 3%).
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Figure 6.10: VLMM tree learnt using the maximum likelihood estimation of
probability and the KL divergence. ε is set to 0.003 and only the probabilities
that are greater than 0.003 are shown on the graph.

E1 E2 E3

KL 25.7% 26.4% 24.9%
Matusita 32.9% 34.8% 32.7%

Table 6.1: Comparison of the prediction of a VLMM learnt from a long text. The
VLMM has been trained using the text E1.

The small differences between the percentage of correct guesses of the three

different texts tends to suggest that the VLMM did not “over learn” the text,

as its performance on the quite dissimilar test set E3 was close to that on the

training set E1.

6.5.3.2 Performance given a small training set

The test was repeated training on the shortest text E3. Results are reported in

tables 6.2 and 6.3 for the Matusita distance and the KL divergence respectively.

The method using the KL divergence performs better this time. Associated

with the Laplace’s law of succession, it is able to predict about 30% of a text

dealing with another subject (E1 and E2).

In the case of the Matusita distance, the best performance is achieved with

λ = 0.05. It seems that this time, the maximum likelihood estimate could not

explain the data on its own. A small amount of uniform prior was important.

This is due to the fact that there were insufficient training data. We cannot trust

the frequencies counted in the training sequence as we could with the training on
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Figure 6.11: VLMM tree learnt using the maximum likelihood estimation of
probability and the Matusita distance. ε is set to 0.003 and only the probabilities
that are greater than 0.003 are shown on the graph.

a large dataset, so we need to include a part of uniform estimation which is done

by increasing the value of λ.

6.6 Conclusion

This chapter has described the theory behind the variable length Markov model

and the learning algorithm. One problem of the VLMM is the choice of ε. It

would be better to be able to estimate it and thus to have a parameter free

algorithm.

Tiňo and Dorffner [45] try to solve this problem by using a completely different

way of constructing the tree in the learning algorithm. They use a metric that

represents how close two sequences are. This metric demands a parameter that

can be interpreted as a learning parameter used in the same way as the learning

parameter of a temporal difference learning [70]. A vector quantisation is then

used to cluster subsequences into clusters that share the same suffix structure

according to the metric. Unfortunately this approach does not eliminate the use

of a parameter. However, it may be easier to find the right parameter for this
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λ E1 E2 E3

0 20.2% 22.1% 30.8%
0.05 23.7% 25.5% 35%
0.1 24.0% 24.8% 32.7%
1 16.6% 16.5% 18.2%

Table 6.2: Comparison of the prediction of a VLMM learnt from a short text
using the Matusita distance. The VLMM has been trained using the text E3. It
has been tested on the three texts E1, E2 and E3. The results are reported for
Lidstone’s law of sucession for different values of λ. The case λ = 0 corresponds
to the maximum likelihood estimate. The case λ = 1, which corresponds to
Laplace’s law of sucession, completely failed since it only predicted spaces.

λ E1 E2 E3

0 20.9% 23% 31.6%
0.5 28.3% 30.1% 52.4%
1 28.3% 30.1% 52.4%

Table 6.3: Comparison of the prediction of a VLMM learnt from a short text
using the Kullback-Leibler divergence. The VLMM has been trained using the
text E3. It has been tested on the three texts E1, E2 and E3. The results are
reported for Lidstone’s law of sucession for different values of λ. The case λ = 0
corresponds to the maximum likelihood estimate. The case λ = 1 corresponds to
Laplace’s law of sucession.

learning algorithm. Experiments show that the result is sometimes better than

the VLMM algorithm and sometimes equivalent.

Different measures of probability and different distances to compare probabil-

ities have been described. We have seen some examples of generated text as well

as generated trajectories in the appearance parameter space.

It has been shown that the use of the Matusita distance in the learning al-

gorithm and the use of the maximum likelihood produced the best estimates of

the probability distribution. However, for short training sets, we cannot trust

totally the observed data, thus a combination of Kullback-Leibler divergence and

Laplace’s law of succession is better.



Chapter 7

Generation of new behaviour

movies

7.1 Introduction

Figure 7.1: Overview of the components of the model. This chapter explains how
to generated a new video sequence of facial behaviour given the models learnt in
the previous chapters.

In chapters 3, 5 and 6, we explained how we are modelling the behaviour

of a face from a video sequence. In this chapter, we show how we can use this

model to generate a new video sequence of the same face that mimics its original

behaviour. Figure 7.1 shows how this chapter fits into our framework.

In this chapter, we first show how the VLMM can explain the behaviour seen

in a video sequence and how we can use it to generate new sequences of pathlet
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models. We then describe how to generate a new trajectory in the appearance

parameter space from that sequence. Finally, we show how to synthesise the

resulting video sequence.

7.2 The VLMM tree for pathlet states: an ex-

planation of the behaviour

One of our aims is to be able to understand the behaviour of the face in the

original video sequence, by just looking at the model. The model should be able

to explain the behaviour in an explicit way.

In this section, we show how the behaviour can be graphically represented.

We take trajectory T2 as an example.

We have seen in section 5.5.2 that pathlet models can be represented effectively

by generating a hundred pathlets from the pathlet model. We can then use this

representation to draw a VLMM tree that stores the probabilities of pathlet model

sequences. Such a tree is drawn on figure 7.2.

Each node on that tree stores a probability of a pathlet state, that is the

probability of a sequence of pathlet models1. In a way similar to the VLMM

trees of letters shown in chapter 6.5, the tree has to be read from the leaves to

the root node. For instance, the node A1 in figure 7.2 stores the probability of

the sequence of pathlet models referred as A, which is composed of the pathlet

models A1, A2 and A3 in that order. Similarly the pathlet model B1 stores the

probability of the sequence of pathlet models B, composed of the pathlet models

B1, B2, B3 and B4 in that order.

With this representation of the VLMM tree, we can see what the probabilities

stored in the tree represent. The global shape on the part of trajectory encoded

in each node can be seen directly from the tree. We only need to concatenate

generated pathlets from the pathlet models represented in nodes A1, A2 and A3

to understand the possible trajectories generated from the sequence of pathlet

models A.

Figure 7.3 illustrates the way the VLMM tree has to be read for the sequence

of pathlet models B. The possible trajectories described by the sequence of path-

let models B is the concatenation of generated pathlets from the pathlet models

1Note that the probabilities are not drawn on the tree of figure 7.2 for simplicity only
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A1

A2

A3

B1

B2

B3

B4

A

B

Figure 7.2: VLMM tree of pathlet states. The tree has been generated by learning
the sequence of pathlet models extracted from trajectory T2. Only a part of the
tree is shown.

B1, B2, B3 and B4. The arrows represent how the trajectory evolves through

time. First we use points generated with the pathlet model B1, then points gen-

erated with the pathlet model B2 and so forth. Since one hundred pathlets have

been generated from each groups on figure 7.3, the resulting drawing represents

the distribution of possible trajectories that can be generated from the sequence

B (the arrows show its direction). Another example of a sequence of pathlets

extracted from the VLMM tree of figure 7.2 is shown on figure 7.4.

Note that on figures 7.3 and 7.4, the directions of the pathlets generated from

the pathlet models have been highlighted with arrows. The representation of the

pathlet models in figure 7.2 does not show those directions. It could be added to

the representation in figure 7.2 by drawing the direction of the mean pathlet of

the model. The direction could also be encoded in colour.

However, in this simple example, it is easy to guess the direction of the gen-

erated pathlets. The end of a pathlet should correspond to the beginning of the
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B4

B3

B2

B1

Figure 7.3: Representation of the sequence B, highlighted in figure 7.2. The
trajectory generated by this sequence is a concatenation of pathlets generated by
the groups B1, B2, B3 and B4. The arrows shows how the trajectory evolves
throw time following pathlets from the groups B1, B2, B3 and then B4. The
original trajectory used to teach the model is drawn in grey.

next pathlet. We can deduce the directions of pathlets by matching beginnings

and ends of generated pathlets.

Looking at the probabilities stored in the VLMM tree, we can easily explain

the behaviour encoded in the original trajectory. This gives an advantage over

other models of behaviour that usually do not provide such an explicit and struc-

tured modelling, for instance models based on the autoregressive process.

7.3 Generating a new sequence of pathlet mod-

els

Suppose that we have already generated a sequence of pathlet states

S = {Gn,Gn−1, . . . ,G2,G1} (7.1)

We want to extend that generated sequence with another pathlet state G0.

In order to do that, we test every possible new sequence. For each pathlet

state G0, we extract the probability of the sequence {Gn,Gn−1, . . . ,G1,G0}. This

gives us a probability distribution for the choice of the pathlet state G0. We can

then stochastically sample from that probability to find the pathlet state to add.
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A3

A1

A2

Figure 7.4: Representation of the sequence A hihglighted in figure 7.2. The
trajectory generated by this sequence is a concatenation of pathlets generated
by the models A1, A2 and A3. The arrows shows how the trajectory evolves
throw time following pathlets from the models A1, A2 and then A3. The original
trajectory used to teach the model is drawn in grey.

Figures 7.2 and 7.5 show this approach (the two figures show parts of the

same generated tree). Suppose S is composed of the pathlet states depicted in

the nodes A1 and A2 of the tree (figure 7.2). We extend the trajectory generated

by the sequence S with one pathlet.

For each node on the first level of the tree, we look for the history S in the

next couple of levels. For instance, for the node A3, the history S can be found

in the tree and the whole resulting sequence is depicted by A in figure 7.2. The

probability for that sequence is read in the node A1.

For the node B4, the history S cannot be found. The last elements of S cannot

be found either, so the probability associated with the sequence we are looking

for is read from the node B4 itself, and we multiply that value by a uniform

probability for each element of S. The resulting probability is therefore:

PB4

|Σ|2
(7.2)

where PB4 is the probability read in the node B4 and |Σ| is the number of pathlet

models.

For the node C2 in figure 7.5, only the last element can be observed in the

tree. Indeed the node C1 encodes the same pathlet state as the last element of S
which is the pathlet state seen in node A2. In that case, a uniform probability is

chosen for the remaining pathlet state in the sequence S and the probability of
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Figure 7.5: VLMM tree of pathlet states for the trajectory T2. Only a part of
the tree is shown.
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the sequence we are looking for is:

PC1

|Σ| (7.3)

where PC1 is the probability read in the node C1.

For node E1 in figure 7.5, the history cannot be found in the tree. The

probability is:
PE1

|Σ|2
(7.4)

where PE1 is the probability read in the node E1.

Finally, for node D3 in figure 7.5, the history can be found in the tree and the

probability can be read directly from the node D1.

We are computing such probabilities for all the remaining possible pathlet

states. A random sampling for the computed probabilities gives us the way to

extend S, as described in section 6.4.

7.4 Generating a new trajectory

Once we have a sequence of pathlet states, we have a sequence of associated

pathlet models and we can generate a new trajectory in the appearance parameter

space.

For each pathlet model, we can generate a new pathlet. The generated tra-

jectory in the appearance parameter space is the concatenation of the pathlet

generated from each group in the order it appears in the pathlet model sequence.

We have two ways of generating the pathlets given a model. We can use the

spatiotemporal model of pathlets (equation 5.6 in section 5.3.2) or we can use the

spatiotemporal model with linear residuals (equation 5.8 in section 5.3.3).

7.4.1 Generation without the residual model

For each group in the sequence of pathlet models, we can sample a new pathlet

using equation 5.6 as described in section 5.3.2. The generated trajectory is then

the concatenation of the generated pathlets. Note that for each generated pathlet,

the timings used to reconstruct the pathlet are added to the timing at the end

of the previous pathlet, so that the difference of time between the first point of a

pathlet and the last point of the previous pathlet is the same as the difference of
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(a) Generated from tra-
jectory T1

(b) Generated from tra-
jectory T2

(c) Generated from tra-
jectory T3

Figure 7.6: Trajectories generated with the normalised cut algorithm and the
dynamic time warping algorithm.

time between two consecutive points within a pathlet. This is needed to ensure a

continuous representation of the timings through the whole generated trajectory.

Figure 7.6 shows generated trajectories for sequences of pathlet models ex-

tracted from trajectories T1, T2 and T3 with the normalised cut algorithm. Fig-

ure 7.7 shows generated trajectories for sequences of pathlet models extracted

from trajectories T1, T2 and T3 with the greedy algorithm.

One can notice some jumps in the generated trajectories, especially on figure

7.6. Since the points are linked by lines on figures 7.6 and 7.7, those jumps

correspond to straight lines. Some of those jumps (the larger ones) correspond to

problems of prediction of the VLMM. Generating a wrong pathlet state sequence

generates a discontinuous trajectory since the ends of pathlets do not match.

We can see that the VLMM has more trouble modelling the sequence of pathlet

models when we use the normalised cut algorithm and the dynamic time warping

than when we use the greedy algorithm. This is due to the fact that the well

formed pathlet groups extracted with the greedy algorithm give a more structured

sequence of pathlet models, for structured trajectories. Outliers appearing in the

pathlet groups extracted with the normalised cut algorithm tend to give less

structured pathlet model sequences. If an outlier is modelled in a pathlet model,

it generates an unlikely temporal relationship with the other pathlet models. A

VLMM being trained on an unlikely sequence of pathlet models has more chance

of selecting unsuitable pathlet models.
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(a) Generated from tra-
jectory T1

(b) Generated from tra-
jectory T2

(c) Generated from tra-
jectory T3

Figure 7.7: Trajectories generated with the greedy algorithm.

7.4.2 Generation with a linear residual model

If we use the spatiotemporal model without modelling the residuals, the ends

of generated pathlets might not always match each other. Indeed, even if the

mean pathlets of two consecutive pathlet models join properly, it does not mean

that sampled pathlets from those two groups join properly. This is a problem for

the corresponding generated video sequences since one can see sharp changes of

the movement of the face when generating parts of the video corresponding to

changes of pathlet. This creates a impression of a face jumping which is easily

spotted by people.

In order to reduce this effect, we tried to add constraints on pathlet models.

Unfortunately, it leads to an over-constrained problem. Figure 7.8 illustrates

the problem. It shows a previously generated pathlet on the left. We want to

generate the next pathlet. Dotted lines show possible pathlets we can generate

from the next pathlet model. Due to the small number of modes describing the

possible generated pathlets, the beginnings of those pathlets describe a subspace

of the appearance parameter space. This happens when the number of modes

of the pathlet model is lower than the dimension of the appearance parameter

space2. Matching the end of the previous generated pathlet is impossible if this

point does not belong to the subspace described by the beginnings of possible

generated pathlets.

2Since we aim for compact pathlet models, this case is frequent.
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Previous generated pathlet

Possibilities for the pathlet to generateSubspace of
possible beginnings

Beginning of the mean
pathlet of the next
pathlet model

End of the previous pathlet

Figure 7.8: Constraining the generation of pathlets. The beginning of any gen-
erated pathlet cannot match the end of the previous generated pathlet.

Since adding constraints did not work, we use the linear residual model de-

scribed in section 5.3.3. For each pathlet model, a pathlet is generated using

equation 5.6 as in the previous section. The beginning of each pathlet is then

forced to match the end of the previous one. The other points of the pathlet are

moved according to equation 5.9 in section 5.3.3.

Figures 7.9 and 7.10 show generated trajectories using the normalised cut al-

gorithm and the greedy algorithm respectively. The linear model for the residuals

has been used to generate both figures.

7.5 Synthesising the new video sequence

Once a trajectory has been synthesised in the appearance parameter space, we

can generate a new video sequence. Each point on the trajectory corresponds to

one frame in the video sequence. For each point, we generate an image of the

face by using the appearance parameter c in equation 3.10 and use the result b

to reconstruct the shape (equation 3.7) and the shape-free texture (equation 3.8

page 50). The shape-free texture is then warped to the computed shape.

Examples of generated video sequences can be seen on the accompanying

CD-ROM. The files:
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(a) Generated from tra-
jectory T1

(b) Generated from tra-
jectory T2

(c) Generated from tra-
jectory T3

Figure 7.9: Trajectories generated with the normalised cut algorithm, the dy-
namic time warping algorithm and a linear residual model. Figure 7.9(a) shows
a trajectory generated from the trajectory T1. Figure 7.9(b) shows a trajec-
tory generated from the trajectory T2. Finally, figure 7.9(c) shows a trajectory
generated from the trajectory T3.

(a) Generated from tra-
jectory T1

(b) Generated from tra-
jectory T2

(c) Generated from tra-
jectory T3

Figure 7.10: Trajectories generated with the greedy algorithm and a linear resid-
ual model. Figure 7.7(a) shows a trajectory generated from the trajectory T1.
Figure 7.7(b) shows a trajectory generated from the trajectory T2. Finally, figure
7.7(c) shows a trajectory generated from the trajectory T3.
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• examples/V1/V1_wor.m1v,

• examples/V2/V2_wor.m1v,

• examples/V3/V3_wor.m1v

have been generated without using the linear residual model while the files:

• examples/V1/V1_wr.m1v,

• examples/V2/V2_wr.m1v,

• examples/V3/V3_wr.m1v

have been generated using the linear residual model. All those files have been

generated using the greedy algorithm.

7.6 Conclusion

In this chapter we have explained how to generate new video sequences of facial

behaviour using our model. First, new sequences of pathlet states are sampled

from the VLMM. Then pathlets are sampled from each corresponding pathlet

model. The pathlets are concatenated together with an optional smoothing per-

formed by using the residual component of the pathlet model. This gives us a

sequence of appearance parameters. Finally, the new video sequence is generated

by synthesising each frame in turn using the appearance model.

Using the linear residual model avoids jumps in generated trajectories. But, as

we can see by comparing figures 7.7 and 7.10, it also seems to generate less likely

trajectories. We need to be able to assess how good the generated trajectories

are. In the next chapter, we develop a measure of comparison between generated

trajectories in the appearance parameter space and use it to assess our model

by comparing it to an alternative. A psychophysical experiment is also used to

assess how people judge the generated video sequences.



Chapter 8

Qualitative and Quantitative

Results

8.1 Introduction

This chapter assess our model of behaviour both qualitatively and quantitatively.

Our model is compared to an alternative based on an autoregressive process. This

model is described in section 8.2.

A measure of comparison between behaviour models is derived in section 8.3.

It is used to compare our model to the one based on autoregressive process.

Finally, a psychophysical experiment has been set up. People were asked

to compare generated videos. The experiment is described and the results are

reported.

8.2 A model based on an autoregressive process

In [17], Campbell et al. introduce another way of generating video sequences of

faces based on an existing video clip without direct reuse of the original frames.

They encode frames from the original sequence in a way similar to our method.

An appearance model is used to model the face through the video sequence and

a trajectory is obtained in the appearance parameter space. This trajectory is

then used to train a second order autoregressive process.

An autoregressive process predicts the position of a point yk in the appearance

parameter space, given the two previous points yk−1 and yk−2 where k represents
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the frame number. This prediction is produced by the equation:

yk − y = A2 (yk−2 − y) + A1 (yk−1 − y) + B0wk (8.1)

where y is the limit of the mean value of yk as k tends to infinity, wk contains

white noise (wk ∼ N (0, 1)), A2, A1 and B0 are parameter matrices. y, A2, A1

and B0 can be learnt from the original data set. The learning method used in

this work is due to Reynard et al. and is described in [79] and [8].

Given two initial points in the parameter space, a new trajectory can be gener-

ated by repeatedly applying equation 8.1. This new trajectory in the parameter

space fed into an appearance model to generate a video sequence. Figure 8.1

shows an example of a video clip generated by an autoregressive process. The

original video sequence V3 is shown on figure 8.2. For comparison figure 8.3

shows the generation of similar video sequences with our model.

Figure 8.1: Frames taken every 4 seconds from the video sequence generated with
an autoregressive process.

Figure 8.2: Frames taken every 4 seconds from the original long video sequence.

Figure 8.3: Frames taken every 4 seconds from the video sequence generated with
our model and the linear residual model.
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The corresponding video sequences can be seen on the accompanying CD-

ROM. The file examples/V3/V3_orig.m1v shows the original video sequence.

The file examples/V3/V3_arp.m1v shows the video sequence generated with the

autoregressive process. The file examples/V3/V3_wr.m1v shows the video se-

quence generated with our model if we use the linear model for the residuals.

The file examples/V3/V3_wor.m1v shows the video sequence generated with our

model when we do not use the residuals.

Another example can be seen on figures 8.4(a), 8.4(b), 8.4(c) and 8.4(d).

Those figures describe the trajectory T3 (figure 8.4(a)) as well as the correspond-

ing generated trajectory using our model with or without the linear model of

residuals (figures 8.4(c), 8.4(b) respectively). Finally figure 8.4(d) shows the

trajectory generated by the autoregressive process in the appearance parameter

space. The corresponding video sequences can be seen on the accompanying CD-

ROM. The file examples/V1/V1_orig.m1v shows the original video sequence.

The file examples/V1/V1_arp.m1v shows the video sequence generated with the

autoregressive process. The file examples/V1/V1_wr.m1v shows the video se-

quence generated with our model if we use the linear model for the residuals.

The file examples/V1/V1_wor.m1v shows the video sequence generated with our

model when we do not use the residuals.

8.3 A measure of quality of generated videos

8.3.1 The comparison measure

In order to compare the two models, we need some measure of behavioural simi-

larity between two video sequences. Our approach is to compare the distribution

of the generated points in the parameter space with the distribution of points

extracted from the original video sequence.

We construct two dimensional histograms to approximate the distribution

of points in the parameter space for each pair of dimensions. We choose two

dimensional histograms instead of p dimensional histograms because we rarely

have sufficient data to fill the latter, and because of the computational complexity

of generating p dimensional histograms.

In order to compare the original and generated sequences of points using

histograms, particular care has to be taken on the selection of the bin width
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(a) Training sequence extracted from video
V1.

(b) Generated sequence with our model
without using the residuals.

(c) Generated sequence with our model
and a linear model for the residuals.

(d) Generated sequence with an autore-
gressive process.

Figure 8.4: Comparison of generated trajectories. Figure 8.4(a) represents points
on the trajectory that corresponds to the original video sequence. Figure 8.4(b)
represents points on the trajectory generated by our model if the residuals used
are set to zero. Figure 8.4(c) represents the equivalent with a linear model for
residuals. Figure 8.4(d) represents points on the trajectory generated by an au-
toregressive process.
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used to compute those histograms. Indeed, a too large bin width will smooth the

original data while a too small bin width will result in an over-fitting of the data.

In order to solve this problem, and for reproducibility of the comparison method,

we used Scott’s rule to select the bin size [97]. The bin size for each dimension is

given by the formula:

h = 3.5ξN−
1
3 (8.2)

where N is the total number of points in the original sequence and ξ is the

standard deviation of the original data computed with respect to the selected

dimension.

The two dimensional histograms of a reference and a generated set of points

are then compared using a Bhattacharyya overlap B(i, j), where i and j are the

dimensions used to compute the histograms. B(i, j) can be computed for each

pair of dimensions (i, j). The final similarity measure m is computed by averaging

the quantities B(i, j) using the formula:

m =
1

p2

p∑

i=1

p∑

j=1

B(i, j) (8.3)

where p is the dimension of the parameter space P . The standard error can also

be computed to represent our confidence in the result.

m represents how close the point distributions of the generated and the ref-

erence sequences are. A value of 1 corresponds to a perfect match of the distri-

butions. A value of 0 corresponds to two totally different distributions.

The facial behaviour models are assessed with respect to the original video

sequence used to create those models. The distributions of points in the appear-

ance parameter space should match with the original one if the model performs

its task correctly.

Figures 8.5 and 8.6 show how this similarity measure can be applied to find the

best generated trajectory in the appearance parameter space. Figure 8.5 shows a

similarity result of 0.898 while figure 8.6 shows a similarity result of 0.965. Thus,

the trajectory generated using our model has a greater similarity to the original

trajectory than the trajectory generated using the autoregressive process. Our

model performs better on this example. The next session describes the results

obtained on the videos sequences V1, V2 and V3 introduced in section 4.3.
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Trajectory generated by
the autoregressive process

Bhattacharyya Overlap
m=0.898

Original trajectory

Figure 8.5: Comparison between the original trajectory and a trajectory gener-
ated by the autoregressive process. The histograms represent densities of points
extracted from regularly spaced rectangular areas of the appearance parameter
space. The areas are the same for both trajectories and are computed using the
original trajectory.
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Bhattacharyya Overlap
m=0.965

Trajectory generated by our model

Original trajectory

Figure 8.6: Comparison between the original trajectory and a trajectory gener-
ated by our model. The histograms represent densities of points extracted from
regularly spaced rectangular areas of the appearance parameter space. The areas
are the same for both trajectories and are computed using the original trajectory.
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8.3.2 Results with the comparison measure

Table 8.1 presents the results of the comparisons for the videos generated from

the video sequences V1, V2 and V3. Each training video is compared with each

model using the measure described in the previous section for both position and

speed data. The bold labels represent lines where our model is significantly

better than the autoregressive process. We can see that our model outperforms

the autoregressive process for structured videos, while maintaining good results

for the unstructured video.

The videos corresponding to the entries in table 8.1 can be found on the

accompanying CD-ROM. The videos:

• examples/V1/V1_arp.m1v,

• examples/V1/V1_wr.m1v,

• examples/V1/V1_wor.m1v

are generated from the video V1 using the autoregressive process, our model with

and without linear residuals respectively. Similarly the videos:

• examples/V2/V2_arp.m1v,

• examples/V2/V2_wr.m1v,

• examples/V2/V2_wor.m1v

are generated from the video V2 and the videos:

• examples/V3/V3_arp.m1v,

• examples/V3/V3_wr.m1v,

• examples/V3/V3_wor.m1v

are generated using the video V3 using the same models respectively.

A visual inspection of the generated video sequences shows that our model

performs best when we use the linear model for the residuals. Indeed, it produces

smooth video sequences that exhibit realistic behaviours. If the residuals are not

used, then the generated videos contain perceptible jumps of the face, thus giving

a worse overall effect. Finally, the autoregressive process produces a video with
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position:

speed:
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position:

speed:

position:

speed:

position:

speed:

position:

µ = 0.903, σ = 0.002

µ = 0.813, σ = 0.006

µ = 0.864, σ = 0.002

µ = 0.931, σ = 0.001

µ = 0.870, σ = 0.002

µ = 0.896, σ = 0.003

µ = 0.897, σ = 0.005

µ = 0.865, σ = 0.006

µ = 0.901, σ = 0.005

µ = 0.829, σ = 0.009

µ = 0.782, σ = 0.011

µ = 0.828, σ = 0.011

µ = 0.896, σ = 0.005

µ = 0.944, σ = 0.004

µ = 0.910, σ = 0.004

µ = 0.965, σ = 0.003

µ = 0.863, σ = 0.008

µ = 0.898, σ = 0.010

Table 8.1: Comparison of the autoregressive process (ARP) with our model
(WOR and WR). WOR is our model when we are not using residuals while
WR is our model with the linear model for residuals.
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many perceptible jitters, due to the noise present in equation 8.1, which also give

a worse effect.

Jitters and jumps in the generated video sequences are not taken into account

in our measure of comparison. Indeed, this measure is only a crude way to assess

the quality of generated video sequence.

Since comparing generated video sequences is a complicated task and depends

on the psychology of humans, we have set up a psychophysical experiment to

perform the assessment.

8.4 The psychophysical experiment

8.4.1 The aim of the experiment

In order to assess how people judge generated video sequences, we set up a psy-

chophysical experiment.

The experiment should answer the following two questions:

• are people able to distinguish between a generated video sequence and the

original video sequence?

• are people able to distinguish between two video sequences generated with

two different models? If so, which model produces the most realistic be-

haviour?

In order to answer those questions we implemented a forced choice experiment.

8.4.2 Description of the experiment

After a short description of the experiment (see figure 8.7), people are asked to

answer 52 questions. Each question consists of a comparison between two video

sequences. The user is asked to choose the most realistic video between the two

videos displayed (see figure 8.8).

Tables 8.2 and 8.3 summarise the content of the questions. The questions are

the same for each person completing the experiment. They have been selected in

such a way that:

• each type of video is shown the same number of times.
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Figure 8.7: Screen capture of the description of the experiment.



CHAPTER 8. QUALITATIVE AND QUANTITATIVE RESULTS 148

Figure 8.8: Screen capture of a question during the experiment.
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• each type of video appears the same number of times on the right as on the

left.

• generated videos are compared to the original video.

• videos generated with one model are compared to video generated with all

the other models.

• for each pair of generated videos another pair is shown with the same models

in the same order.

• for each pair of generated videos another pair is shown with the same models

in a different order.

In addition to those questions, people are asked to compare four times the

original video to itself. Those questions are used to verify whether people prefer

the right or the left given no real difference. The questions are presented in

random order to avoid potential psychological effects on sequences of similar

questions.

The experiment has been done online to allow a wide range of persons to

participate. Two video formats have been provided (mpeg and animated gif).

The mpeg format provided the best quality and people were advised to use it in

the presentation of the experiment.

The accompanying CD-ROM contains the video files used for the experiments.

The files exp/m1v/q01.m1v to exp/m1v/q52.m1v, corresponding to the videos

used for questions 1 to 52 respectively, are encoded using the mpeg format, while

the files exp/gif/q01.gif to exp/gif/q52.gif are the corresponding videos

encoded in the animated gif format. The mpeg files are each 405 frames long.

This correspond to a runtime of about 16 seconds1. The animated gif version

contains half of the frames with half the frame rate2. So each person completing

the experiment to the end has seen about 14 minutes of video sequences (either

generated or original videos). This time appeared to be globally too long for

people to concentrate, which explains why only video V2 and video V3 have been

included in the experiment. Video V2 represents a structured video while the

video V3 is unstructured.

115 seconds correspond to the actual video displayed while the remaining corresponding to
a countdown inserted at the beginning of the video.

2The full frame rate could not be used due to technical reasons. This also reduces the size
of the video by half thus reducing the download time.
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Question Video V2: expressions Video V3: dialog
number Original WR WOR ARP Original WR WOR ARP

1 ← →
2 → ←
3 ↔
4 ← →
5 ← →
6 ← →
7 → ←
8 ← →
9 ← →
10 ← →
11 ← →
12 → ←
13 ← →
14 ← →
15 ↔
16 → ←
17 ← →
18 ← →
19 ← →
20 ← →
21 → ←
22 ← →
23 ← →
24 → ←
25 → ←
26 → ←
27 ← →
28 → ←
29 → ←
30 → ←
31 → ←
32 → ←
33 → ←
34 → ←

Table 8.2: Summary of the content of the questions in the experiment (questions
1 to 34). Arrows pointing to the left means that the video is shown on the left
while arrows pointing on the right means that the video is shown on the right.
An arrow pointing in both directions means that the clips used on the right as
well as the one on the left are extracted from the same video.
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Question Video V2: expressions Video V3: dialog
number Original WR WOR ARP Original WR WOR ARP

35 → ←
36 ← →
37 ← →
38 → ←
39 → ←
40 ↔
41 → ←
42 → ←
43 → ←
44 ↔
45 ← →
46 ← →
47 → ←
48 ← →
49 → ←
50 → ←
51 ← →
52 ← →

Table 8.3: Summary of the content of the questions in the experiment (questions
35 to 52). Arrows pointing to the left means that the video is shown on the left
while arrows pointing on the right means that the video is shown on the right.
An arrow pointing in both directions means that the clips used on the right as
well as the one on the left are extracted from the same video.
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Finally, the time taken to answer each question has been recorded although

no indication about timings were given to the volunteers.

8.4.3 Statistics

Since only two choices are available for each question, the statistics of the set of

answers describe a binomial distribution. If we are comparing videos generated

from a model A with videos generated from a model B, the probability P (r; p, n)

of choosing the videos generated by the model A r times out of n trials is given

by the equation:

P (r; p, n) =
n!

r!(n− r)!p
r(1− p)n−r (8.4)

where p is the hypothetical probability of choosing A for each trial.

We want to answer the question: ”can people distinguish between two different

models by looking at generated videos from the two models”?

We consider the null hypothesis that the videos are indistinguishable. In this

case, p = 0.5 and the distribution of r is given by:

P (r; p, n) =
n!

2nr!(n− r)! (8.5)

We reject the null hypothesis if:

max(r,n−r)−1∑

i=min(r,n−r)+1

n!

2ni!(n− i)! > 0.95 (8.6)

i.e. there is a 95% chance that we would have obtained a smaller difference if

the videos had been indistinguishable.

Similar equations can be used to check whether people prefer the left or the

right when choosing videos from two choices extracted from the original sequence.

8.4.4 Results of the psychophysical experiment

Of the 112 people who volunteered, only 43 completed all the questions. Technical

problems and the length of the experiment deterred the rest. In the following we

present an analysis based on the 43 complete surveys.

Figure 8.9 shows a graph of the time used to answer the questions. We can

see three different types of response on this graph:
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• answers before the end of the video.

• answers at the end of the video.

• answers after playing the video a second time.

The three different types of response are separated by dotted lines on the graph,

corresponding to the end of the video either played once or twice.
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Figure 8.9: Time taken to answer the questions in the experiment. One dotted
line corresponds to the time taken by the video. The other one corresponds to
twice that time.

Since most answers belong to the two last categories, it appears that the

experiment has been done carefully by the persons who took the time to complete

it.

When comparing two videos clips both extracted from the original sequence,

people tend to choose the video on the right rather than the video on the left.

Indeed, 72 videos have been selected on the left while 99 videos have been selected

on the right. This gives a significant bias towards the right (the probability being

0.9535).
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Original WR WOR ARP

Original 121 (35%) 125 (36%) 86 (25%)
WR 223 (65%) 168 (49%) ? 124 (36%)

WOR 219 (64%) 176 (51%) ? 158 (46%) ?
ARP 258 (75%) 220 (64%) 186 (54%) ?

Table 8.4: Psychophysical experiment answers’ summary. WR (respectively
WOR ) is our model with (respectively without) a linear residual model. ARP is
the autoregressive process. The results are reported for the whole set of questions.
Each cell represents the number of answers selecting the model in the column as
being more realistic than the model in the row. A star (?) has been added to
non-significant results.

The bias on the selected side is also present if we use all the questions. This

bias is the main reason why we have only kept answers from the people completing

the whole experiment. The side on which the generated videos appears should

be balanced to compensate for the bias introduced in the case of random choice.

If the experiment is completed, each pair of models is displayed an equal number

of times on each side.

The results of the experiments can be seen on table 8.4. The table shows

the number of answers given for each pair of models, for all the videos and all

the volunteers. It shows that for each model, people were able to distinguish

between the original video sequence and the generated ones. There is still room

for improving any of the models. This result is in agreement with the results of

Hack who did a similar experiment [41] and found that no model so far tested in

his experiment can confound the volunteers.

The results of our experiment also show that our model performs better than

the autoregressive process if the linear model of residuals is used to smooth the

output. We cannot conclude anything when comparing the other possible pairs

of models since the results are not significant (cases annotated by a ? in table

8.4).

Table 8.5 shows the results for video V2 (expressions). It shows similar results.

We can also conclude that, for video V2, our model is also significantly better

than the autoregressive process even when we do not use the linear model of

residuals.

Table 8.6 shows the results for video V3 (dialog). This time, only the original

videos have been successfully spotted by the volunteers. There are no significant
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Original WR WOR ARP

Original 58 (34%) 66 (38%) 25 (15%)
WR 114 (66%) 91 (53%) ? 44 (26%)

WOR 106 (62%) 81 (47%) ? 69 (40%)
ARP 147 (85%) 128 (75%) 103 (60%)

Table 8.5: Psychophysical experiment answers’ summary for video V2. WR
(respectively WOR ) is our model with (respectively without) a linear residual
model. ARP is the autoregressive process. Each cell represents the number of
answers selecting the model in the column as being more realistic than the model
in the row. A star (?) has been added to non-significant results.

Original WR WOR ARP

Original 63 (37%) 59 (34%) 61 (35%)
WR 109 (64%) 77 (45%) ? 80 (47%) ?

WOR 113 (66%) 95 (55%) ? 89 (52%) ?
ARP 111 (65%) 92 (53%) ? 83 (48%) ?

Table 8.6: Psychophysical experiment answers’ summary for video V3. WR
(respectively WOR ) is our model with (respectively without) a linear residual
model. ARP is the autoregressive process. Each cell represents the number of
answers selecting the model in the column as being more realistic than the model
in the row. A star (?) has been added to non-significant results.

differences between any other pairs of models. However, the results suggest that

our model does not perform worse than the autoregressive process when we use

the linear model of residuals.

8.5 Conclusion

In this chapter, we have developed a measure of comparison of facial behaviour

models to assess quantitatively our model of behaviour. This measure is based on

a comparison of trajectories in the appearance parameter space. A Bhattacharyya

overlap is used to compare histograms of densities of points in the appearance

parameter space. This measure shows that our model outperforms an alterna-

tive on structured videos sequences while maintaining a good performance on

unstructured video sequences.

A psychophysical experiment was performed to assess qualitatively our model
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of facial behaviour. It showed that our model is significantly better than the

model based on an autoregressive process when it models structured video se-

quences. We do not have any significant results for unstructured video sequences.

However, the figures suggest that our model does not perform worse than the au-

toregressive process in that case.

Agreements between the two methods of evaluation suggest that our quan-

titative measure of similarity between two facial behaviour models follows the

natural choice of people.

Furthermore, people seem to have trouble to distinguish between our model

with and without the linear model of residuals. However, in structured video

sequences, the experiment shows that our model is better than the autoregressive

process even if we do not use the residual model.



Chapter 9

Conclusions

This thesis has described a practical approach to modelling the behaviour of

faces by learning from video sequences. The assumption is that people repeat

fragments of behaviour, and that it is possible to learn both the general form of

the fragments and the order in which they tend to happen.

The fragments are represented using models of pathlets in the parameter space

of a facial appearance model. A VLMM is trained to generate the order of

transitions between pathlets over both short and long timescales.

9.1 Summary of contributions

Though similar approaches have been used to model human motion [34], as far

as we are aware, this is the first time the approach has been applied to facial

behaviour.

As well as this, the contributions include :

1) A heuristic for breaking a trajectory into pathlets. An efficient

heuristic has been developed to break a trajectory into pathlets. By ob-

serving that similar pathlets should have similar beginning and similar ends,

points of high density in the parameter space are used to split the trajectory.

2) A compact pathlet model. By modelling the pathlet groups using a

multivariate Gaussian, it has been shown how timing information can be

included in the model, thus allowing modelling groups of pathlets of different

speeds.

157
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3) An effective pathlet grouping algorithm. Two pathlet grouping algo-

rithms have been presented. The most effective one is based on a greedy

merging strategy. At each step, the variance of the pathlet groups are kept

as low as possible, leading to compact models.

4) Improvements to the performance of the VLMM. We have shown

how different ways of estimating the probabilities of samples can affect the

performance of the VLMM. Improvement in performance has been achieved

by replacing the Kullback-Leibler measure by the Bhattacharyya measure

for comparing the probability distributions.

5) A quantitative similarity measure for the behaviour model. A

quantitative similarity measure has been developed to assess the quality of

different models of behaviour. Although the measure is crude, it has been

shown that it gives similar results than the intuitive comparisons done by

people.

6) A demonstration of improved performance. A psychophysical exper-

iment has been set up to assess the performance of our model. It shows

an improvement of the performance for structured behaviours compared

to an alternative technique, while performance for unstructured behaviours

remains similar.

9.2 Future work and extensions

Creating a convincing synthetic talking head is a very ambitious project, well

beyond the scope of a single PhD. This thesis demonstrates some progress towards

such a goal, but much further work remains to be done.

The psychophysical experiment suggests that, although our method generally

outperforms a relatively straightforward alternative such as the autoregressive

process, it is not yet good enough to be indistinguishable from the original video.

There is clearly further work required to improve performance. We would also

like to compare our approach with recently described methods such as that of

Hack and Taylor [40], who model facial behaviour using various modifications of

the hidden Markov models.

One of the major drawbacks of our approach, is the number of thresholds

that have to be set by the user. The threshold values usually depend on the
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data that we want to process. For instance, as explained in section 5.2.2, if the

parameter d is too small or too large for the dataset, we take the risk of not

selecting enough nodes to split the trajectory in the appearance parameter space.

We need a method for selecting the parameters automatically.

So far, our model has only been used to synthesise faces. In theory a good

model should be able to help in tracking by predicting likely facial movements.

Adapting our model for this task remains to be done.

Clearly, a convincing talking head would have to integrate speech synthesis,

as well as to be able to both observe a human user and in some way understand

them so that it could react to them appropriately. Merging of results in speech

synthesis, speech recognition, behaviour modelling and eventually complex artifi-

cial intelligence methods could be investigated to create a talking head displaying

emotions believably.

9.3 Final conclusions

This thesis described an approach for modelling the behaviour of deformable

objects from training video sequences. The resulting model is able to explicitly

explain behaviours and more importantly synthesise new videos of behaviour.

The method has been applied on the movement of the face. Though the results

do not yet always convince every human observer, the method is able to generate

believable facial behaviour and could form the basis for an effective talking head.
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Appendix A

Dynamic time warping

The dynamic time warping algorithm compares two sequences of points. A cost

function is defined between each pairs of points. In our case, the cost function

f is the square of the euclidian distance between the points. The total cost of

comparing two sequences is the sum of the cost for each corresponding point

defined by the warping of time. We want to find the best warping that gives the

lowest cost for comparing two sequences of points, that is two pathlets.

Since dynamic time warping assumes continuity and monotonicity of the time,

the minimum cost can be computed recursively by computing the minimum cost

between two sub-sequences starting at the origin, then stepping forward in time1,

either on one sequence or the other or both and computing the minimum cost

between the new sequences by adding the cost of the newly matched points.

Figure A.1 summarises the dynamic time warping algorithm.

For each line i of the grid from 1 to I

For each row j of the grid from 1 to J

compute D(i, j) = min
i− 1 ≤ k ≤ i
j − 1 ≤ l ≤ j
(k, l) 6= (i, j)

{D(k, l)}+ cost(i, j)

return D(I, J)

Figure A.1: The dynamic time warping matching algorithm.

It is possible to retrieve the warp of time used to compute the minimum cost

1We are only stepping forward one step due to the monotonicity condition.
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Figure A.2: Grid representation of the optimal warp. The nodes of the grid
corresponds to pair of points of the two sequences we want to match. They
store the cost of the optimal warp up to that point. The arrows and black dots
represent the optimal warp found for matching the two sequences.

of matching two point sequences. Figure A.2 shows an example of the usual rep-

resentation of that warp. The grid nodes store the similarity values between two

subsequences built using the first elements of the point sequences. For instance

the grid node circled in figure A.2 represents the similarity between subsequences

built using the 5 first elements of one sequence and the 3 first elements of the

other one. The arrows represent the optimal warp found between the two se-

quences. It is the path of lowest cost between the bottom-left corner of the grid

to the top-right corner. However, we are only interested in the final cost, which is

the value of the similarity between the two point sequences. This value is stored

at the top-right node of the grid.



Appendix B

The normalised cut algorithm

The normalised cut algorithm [88] can cluster a set of elements based only on

the values of a similarity measure between all possible pairs of elements. The

approach is a spectral clustering method. It is based on the properties of eigen-

vectors from a matrix computed using the similarities between each pairs of ele-

ments.

In the normalised cut scheme, the clustering is seen as a graph partitioning

problem. The nodes of the graph are the elements and the weights on the graph

edges connecting two nodes are the similarities measured between the two cor-

responding elements. We use the similarity measure described in the previous

section. We seek to partition the graph into subgraphs with high similarities

between the nodes of the same subgraphs and a low similarities between nodes

from different subgraphs.

Let G be that graph with nodes V and an adjacent graph weight matrix

W . The element W (u, v) of W is the similarity measured between the elements

represented by the nodes u and v. We can break G into two disjoint sets A and

B so that A ∪ B = V and A ∩ B = ∅ by simply removing the edges connecting

the two parts. The cost of removing those edges is computed as the total weight

of the edges that have been removed:

cut(A,B) =
∑

u∈A,v∈B
W (u, v) (B.1)

This cost is called a “cut” in the graph theory language. We want to minimise

this cut value when partitioning G.

However, minimising the cut value encourages cutting isolated nodes in G.
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To avoid that problem, the cost of removing edges from A to B is considered as

a fraction of the total weight of connections from nodes in A to all nodes in the

graph. This leads to a new cost measure called the normalised cut:

Ncut(A,B) =
cut(A,B)

asso(A, V )
+

cut(A,B)

asso(B, V )
(B.2)

where asso(A, V ) =
∑
u∈A,v∈V W (u, v) is the total connection weight from all the

nodes in A to all the nodes in V . asso(B, V ) is defined in a similar way. Our aim

is now to find a partition of G that minimise the normalised cut between the two

parts.

Let x be a |V | dimensional vector, that represents the partition of V into two

sets A and B. xi = 1 if the node i is in A and xi = −1 if the node i is in B. We

define:

Ncut(x) = Ncut(A,B) (B.3)

Let di =
∑
j∈V W (i, j), the total weight of edges between the node i and all

the other nodes in the graph. Let D = diag (di) and let b =

∑
xi>0

di∑
xi<0

di
. It is proven

in [87] that:

min
x
Ncut(x) = min

y

yT (D −W )y

yTDy
(B.4)

subject to the constraints yi ∈ {1,−b} and yTD1 = 0. The change of variable:

y =
1 + x

2
− b1− x

2
(B.5)

has been used. So yi = 1 if the node i is in A and yi = −b if the node i is in B.
yT (D−W )y

yTDy
is called the Rayleigh quotient [36, 63]. The minimisation of equa-

tion B.4 can be approximate by relaxing y to take real values and solving the

generalised eigenvalue system:

(D −W )y = λDy (B.6)

Equation B.6 can be rewritten as a standard eigensystem:

D−
1
2 (D −W )D−

1
2 z = λz (B.7)

with z = D−
1
2 y.

By observing the following:
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• D− 1
2 (D − W )D−

1
2 is a symmetric diagonally dominant real matrix with

non-negative diagonal entries so it is positive semidefinite; it has therefore

only positive eigenvalues

• D− 1
2 1 is an eigenvector of D−

1
2 (D −W )D−

1
2 ; its corresponding eigenvalue

is 0

• D− 1
2 (D −W )D−

1
2 is symmetric so its eigenvectors are orthogonal to each

other, in particular the eigenvector z1 that corresponds to the second small-

est eigenvalue is orthogonal toD−
1
2 1 and thus satisfy the constraint y1

TD1 =

0 with z1 = D
1
2 y1

we can use the following theorem [63]: Let A be a n × n real symmetric matrix

with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn. The Rayleigh quotient xTAx
xTx

is minimised

by the jth eigenvector, under the constraint that x is orthogonal to the eigenvector

associated with the j− 1 smallest eigenvalues of A. The minimum is equal to the

λj.

In our case, we can conclude that z1 minimises zTD−
1
2 (D−W )D−

1
2 z

zT z
under the

constraint zTD
1
2 1 = 0. So, y1 = D−

1
2 z1 minimises yT (D−W )y

yTy
under the constraint

yTD1 = 0.

We need only to compute the eigenvector associated with the second smallest

eigenvalue. We use the Lanczos algorithm to compute that vector. This algorithm

iteratively approximates the eigenvectors until convergence [36]. In contrast to

singular value decomposition, only two eigenvectors have to be computed to get

the eigenvector we are looking for. This makes the Lanczos algorithm quicker,

especially for large matrices.

The solution y1 of the relaxed problem can be used as an approximate solution

to the original discrete problem. We need an extra condition on the components of

the solution y1: yi ∈ {1,−b}. In the ideal case, the components of the eigenvector

takes only two discrete values, which represents the two classes. If it is not the

case, we need to choose a splitting point to partition the values of the components

of the eigenvector. Here we simply choose 0 as a splitting point. All the positive

components represent elements from one class and all the negatives ones represent

elements from the other class. Other methods exist for choosing the splitting point

[89].

We can then separate the set of elements into two sets, one containing the

elements corresponding to positive values in the eigenvector and the other one
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containing elements corresponding to negative values in the eigenvector. We

recursively cluster the resulting two element sets until we reach a given number

of clusters.

This number of resulting clusters is usually not a power of two as one would

expect given our description of the algorithm. This is due to the fact that the

normalised cuts algorithm does not always separate the groups into two for each

steps. It is possible that the second eigenvector given by the Lanczos algorithm

has only positive or only negative values. This can be due either to rounding

errors in the computation of the eigenvector or to cases where the choice of 0 as

a threshold value for selecting the two groups is a bad choice (the solution of the

normalised cuts algorithm is only an approximation of the continuous case). It

can also be due to the fact that the group we are trying to split only contains

one element (due to previous splits). In that case, we do not split the group so

the count of the number of group will not be a power of two.


